

INRIA INNOVATION LAB

CERTIVIBE

V1.0

SOFTWARE DESIGN DESCRIPTION

Document Approval

 Name Function Date

Originated by Charles Garraud Development team 12/11/2015

Reviewed by Cédric RIOU Development team 21/09/2017

Approved by Benoît Perrin Project Manager 16/02/2018

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 2 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

HISTORY

Version Author Date Comments

01 CG 12/11/2015 Document Creation

02 CRIO 21/09/2017 Review and update

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 3 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

TABLE OF CONTENTS

1. Document Information .. 4

1.1 Document Roadmap .. 4

1.1.1 Objectives .. 4

1.1.2 Document Overview .. 4

1.1.3 Document User Guide ... 5

1.1.4 References ... 6

1.1.5 Definitions ... 6

1.1.6 Abbreviations .. 6

1.2 Architectural View Documentation ... 8

1.2.1 View Description ... 8

1.2.2 Views Listing .. 9

2. System Purpose ... 10

3. Functional Overview .. 10

3.1 List of features ... 10

3.2 Scenario creation ... 11

3.3 Scenario Use .. 12

3.4 Log and Error Management .. 12

3.5 Late-binding Configuration .. 12

3.6 Summary ... 13

4. Technical Overview ... 13

4.1 Coding Language ... 13

4.2 Build Process ... 13

4.3 Supported Platform ... 14

5. Software System Organization .. 15

5.1 Functional Breakdown ... 15

5.2 Physical Breakdown ... 17

5.3 Mapping .. 22

6. Appendices .. 24

6.1 Architectural View Template ... 24

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 4 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

1. Document Information

 Document Roadmap

1.1.1 Objectives

The main purpose of the document is to describe the general architecture of OpenViBE software system,

a plugin-based software framework dedicated to real-time neuroscience.

1.1.2 Document Overview

The document is divided into subsections:

 $1 Document Information provides information about the purpose and use of the document;

 $2 System Purpose describes the main purpose of the system;

 $3 Functional Overview gives a global overview of the system from a functional perspective;

 $4 Technical Overview gives a global overview of the system from a technical perspective;

 $5 Software System Organization presents the system general organization;

Refer to $1.2.2 Views Listing for the list of descriptive views provided in this document.

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 5 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

1.1.3 Document User Guide

This document can be explored in different ways according to stakeholder expectations:

 Scientists and software developers can browse all technical sections in order to get accustomed

to the software;

1.1.4 QA team members can explore Document Information section to inspect the scope of the
document or browse the

Views are given a unique incremental identifier to be used as reference in other QA documents.

ID View Reference Description

SDD-XXX overview

…

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 6 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

 section to check requirements are handled at architectural level. They might also be interested in

the Erreur ! Source du renvoi introuvable. section.

Different references can be found in the document:

 SRS-XXX identifiers are used to reference requirements (see SRS);

 RSK-XXX identifiers are used to reference risks;

 SDD-XXX identifiers are used to reference architectural views presented in this document;

 MSD-XXX identifiers are used to reference architectural views presented in the MSD document.

1.1.5 References

DOCUMENT # TITLE

EN ISO 13485 Quality systems – Medical devices – System requirements for regulatory

purposes

EN ISO 14971 Medical Devices - Application of Risk Management to Medical Devices

EN ISO 62304 Medical Device Software - Software Life Cycle Processes

SRS Software Requirement Specifications

MSD Module Software Detailed Specifications

1.1.6 Definitions

View A view is a specific snapshot of the architecture. It describes whole or

part of the system from a given perspective.

Prototype In the set of technical documents, refers to the black-box description of a

technical entity (Input/Output description only).

System/Framework/Software

system

OpenViBE Software System.

1.1.7 Abbreviations

ASR Architecture Significant Requirement. It involves requirements in SRS that

have a high-impact on the architecture (usually most of the non-functional

requirements).

OO Object Oriented (relates to object oriented programming paradigm).

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 7 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

API Application Programming Interface.

I/O Input/Output.

1.1.8 Tools

UML diagrams in this document were generated with plantUML that generates diagram from simple text

files.

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 8 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

 Architectural View Documentation

1.2.1 View Description

The system software architecture is documented through snapshots of the system from a given

perspective. These snapshots are called views.

The following table presents a short overview of the different type of views:

View Type Description Identification

Logical View Describes the system statically. It
includes system decomposition, layers
description, packages and classes
hierarchy, black-box module prototype
with I/O description.

LV-DiagramType-Identifier

Ex: LV-ClassDiagram-Module1

Behavioral View Describes the system dynamically. It
includes description of scenarios,
communication between entities and
state changes.

BV-DiagramType-Identifier

Ex: BV-SequenceDiagram-UseCase1

Physical View Describes the system in term of physical
entity. It includes all physical entities
that map some structural components
(e.g. library, executable, source files
etc.).

PV-DiagramType-Identifier

Ex:

PV-ComponentDiagram-Module1

PV-FileHierarchy-Project

Implementation
Views

Describes the system from an
implementation perspective. It includes
code snapshots, file format and
protocol description.

IV-DiagramType-Identifier

Ex:

IV-FileFormat-XmlScenario

IV-SourceCode-MixinPattern

A view template is available at $6.1 Architectural View Template.

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 9 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

1.2.2 Views Listing

Views are given a unique incremental identifier to be used as reference in other QA documents.

ID View Reference Description

SDD-XXX overview

…

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 10 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

2. System Purpose

OpenViBE is a software system that aims to be used by private companies or research centers with needs

in EEG data processing.

EEG data processing is a wide area and it is not possible to forecast what will be these needs. It can vary a

lot depending on the final application field (Neurofeedback, P300 etc.).

To overcome this variability problem, OpenViBE offers flexibility with services to:

 Create personalized chains of signal processing;

 Use theses personalized chains to process EEG data.

Besides, it is impossible to predict what type of applications OpenViBE users want to develop. For instance,

it can be GUI application intended for medical use or a domain specific EEG data processing engine.

Therefore, OpenViBE provides its services through a non-GUI framework distributed as a set of libraries

manipulated through C++ APIs. Creating and using processing chains has to be done programmatically

which is less intuitive but less restrictive as well.

3. Functional Overview

As described in $2 System Purpose, the software system offers services to create personalized chains of

processing and use theses chains to process EEG data. A chains of processing is called pipeline in

computing. Here is a short description of this concept:

In computing, a pipeline is a set of data processing elements connected in series,

where the output of one element is the input of the next one.

Wikipedia - Pipeline (Computing)

 List of features

First, a pipeline is a set of data processing elements. Each element is dedicated to a specific purpose (e.g.

data acquisition, filtering, writing data etc.). Therefore, the functional capacity of a pipeline-based

framework depends on:

 The list of available elements;

 The inter-element compatibility (ability to connect two elements).

https://en.wikipedia.org/wiki/Pipeline_%28computing%29

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 11 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

In OpenViBE, a pipeline is called scenario and a pipeline building block is called a box. A box algorithm is

the software component each box relies on (i.e. the processing engine). Low-level processing unit are

called algorithms.

The system provides a plugin mechanism to offer the capacity to extend the functionalities without the

need to recompile. Each plugin is a software component that adds specific feature to the system. A plugin

can contain the following features:

 Algorithms definitions;

 Box algorithms definitions.

Terminology summary:

Scenario  Processing pipeline represented as chains of boxes

Box  Building block of a scenario

 Relies on box algorithm

Box algorithm  Box processing engine

Algorithm  Low-level unit of processing

 Provides a specific service

 Can be manipulated directly

Metabox  Assembly of boxes

 Behaves just like a normal box

 Has an arbitrary number of inputs and outputs using the same
types as other boxes

 Can have an arbitrary number of settings

 Can be inserted into a scenario

 Scenario creation

As described in $3.1 List of features, the framework provides a list of features that can be extended. The

definition of a pipeline says the elements are connected in series, where the output of one element is the

input of the next one.

Building a pipeline consists of selecting a subset of features, arranging them and connecting them.

OpenViBE provides this service through a centralized management module called Kernel. Two keywords

in the Kernel definition allows a better understanding of the whole framework architecture:

 Management: The kernel provides some management services through dedicated submodules

built around a central manager. It is the brain of the system.

 Centralized: There is no direct communication between boxes.

Kernel managers are accessed through a Kernel context.

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 12 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

The manager dedicated to scenario creation is the scenario manager which is part of the scenario

management submodule. It provides a convenient API to create a scenario, add boxes and link them. The

scenario manager allows scenario to be stored/loaded on the disk.

Typically a scenario needs input data to process. Following input data can be used to feed a scenario:

 Data acquired from an EEG device;

 Data read from a file;

 Data generated on the fly.

 Scenario Use

A scenario is obviously meant to be used at some point. The previous section introduces the Kernel and

its managers. The manager dedicated to playing scenarios is the player manager which is part of the

scenario playback submodule.

The player manager coordinates scenario execution and data flow in the pipeline. It has scheduling and

control duties.

Once a scenario is played, data is sent from one box to another in a unidirectional manner. Each box

performs its processing job and then the scenario playback module is responsible for transferring the

processed data to the next box.

 Log and Error Management

Tracing and recording the workflow of events can be useful for different purposes (debugging, providing

alerts, support). The kernel provides a convenient API for logging in the console or into a file through the

log manager.

A specific manager is used to handle errors with the framework: the error manager.

 Late-binding Configuration

Creating and playing a scenario are performed in a given context. A context is defined by the state of all

configurable items (Kernel, plugins).

This context can be setup according to specific needs. Typically, a user may want to adapt the kernel log

and error level according to the production phase (development, testing, and deployment).

The kernel provides a convenient API for late-binding configuration through the configuration manager.

The configuration manager reads configuration tokens from a file and initialize configurable items

accordingly.

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 13 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

 Summary

 End-user configure an execution context in a configuration file

 End-users create scenarios programmatically

 End-users run scenarios programmatically

 OpenViBE software system logs events at runtime either in console or in file

4. Technical Overview

As described in $2 System Purpose, OpenViBE provides its services through a set of C++ APIs based on core

components.

 Coding Language

The software system makes use of C++ that supports multiple paradigms. It relies on object-oriented

inheritance and abstract virtual interface to achieve polymorphism. Templates are used where genericity

is needed. Sometimes both are mixed as for implementing the mixin/parametrized inheritance pattern

(see following view) widely used in the framework.

IV-CODESOURCE-MIXININHERITANCE

Primary Presentation

template <class T>

class Base : public T { ... };

class Derived : public Base<IDerived> { ... };

class IDerived : public IBase { ... };

Element Catalog / Description

The inheritance hierarchy is linearized: IDerived -> Base -> IDerived -> IBase

Rationale

The main goal is to simulate multiple inheritance and remove the risks bound to true multiple inheritance

(see Diamond of dread).

 Build Process

Build process management is handled with CMake v3.2.

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 14 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

 Supported Platform

Platform Version(s) Compiler(s)

Windows 7/8/10 Visual 2013

Linux Ubuntu 14.04 Gcc 4.8

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 15 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

5. Software System Organization

In $3 Functional Overview, the Kernel module was introduced. A module is a logical subsystem part of the

overall software system. The fact of splitting up a system into subsystem is called a breakdown.

The breakdown can be:

 Functional (identifying elements according to the set of coherent services they provide);

 Physical (identifying elements according to their physical representation/location);

 Both.

The Kernel module is a subsystem in a functional sense as it provides a set of management services but is

also a subsystem in a physical sense as it resides in a specific location in the source code and is distributed

as a single library.

This chapter describes the system in a functional and in physical way. At the end, both perspectives are

mapped together.

 Functional Breakdown

The following view shows the functional breakdown of the system into modules.

LV-PACKAGEDIAGRAM-FUNCTIONALBREAKDOWN

Primary Presentation

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 16 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Element Catalog / Description

This description gives a general overview of each module. Detailed description can be found in the MSD

document. Dependencies between modules does not fill strong rules (no strict layering) except this one:

a box in a plugin does not depend of a box in another plugin.

OpenViBE: Base framework that contains base classes.

Plugins: Extension mechanism that provides interfaces to create new boxes and algorithms.

Kernel: As described in $3 Functional Overview, the Kernel module provides a set of centralized

management services.

OpenViBEToolkit: Helper module. Some services provided by other modules within OpenViBE are not easy

to access or use. This module takes care of wrapping some of these complex services into a much more

easy-to-use interface. It is a service usability facilitator.

Modules: Portable utility modules that provide some low-level services:

- Socket: Client-server network connection services

- Date: Date formatting and parsing services

- XML: XML data parsing and serializing services (based on Expat)

- System: System utility services related to memory consumption, timing etc.

- EBML: EBML data parsing and serializing services (see EBML Specifications)

- CSV: utility library used to load/save CSV data

OpenViBE Plugins: As described $3 Functional Overview, each plugin is a different module as it provides a

set of coherent services. The diagram shows a sample of the existing plugins:

- Classification: Provides classification features (boxes and algorithms)

- Signal Processing: Provides signal processing features (boxes and algorithms)

- FileIO: Provides features to import/export files to include in a scenario (boxes and algorithms)

Dependencies: 3rd party libraries:

boost: C++ utility libraries (see Boost website)

- Version: 1.54

- Portability: Support gcc > 4.5 and MSVC > 8.0 SP1 on Windows XP/Vista/7

- License: Boost software license (usable in proprietary software)

- Library selection rationale: open-source, standalone, library developers in the C++ standard committee,

some libraries transferred to the standard, formal review process (see boost review process).

https://github.com/Matroska-Org/ebml-specification/blob/master/specification.markdown
http://www.boost.org/
http://www.boost.org/community/reviews.html

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 17 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

expat: XML parser C library.

- Version: 2.1.0

- Portability: Multi-platform

- License: MIT license

- Library selection rationale: stable, lightweight, used in many open-source projects (Apache HTTP Server,

Mozilla, PERL, Python) and originally developed by J. Clark (technical lead of the working group that

developed XML – W3C).

Xerces C: XML parser C++ library with schema validation features (see xerces website).

- Version: 3.1.1

- Portability: supports gcc 4.8 and MSVC 2012

- License: Apache License 2.0

- Library selection rationale: standalone, standard (Apache), widely used, well documented.

eigen: High performance C++ linear algebra library (see eigen website).

- Version: > 3.1.1

- Portability: supports gcc > 4.1 and MSVC > 2008

- License: MPL2 (weak copyleft)

- Library selection rationale: open-source, standalone, cmake-based, reliable (see eigen reliability) widely

used, well documented.

gtest: Unit test framework (see google test website).

- Version: 1.6.0

- Portability: Any c++98-standard-compliant compilers and MSVC > 7.1

- License: BSD 3-clauses

- Library selection rationale: open-source, standalone, cmake-based, widely used (OpenCV, LLVM,

Chromium), well documented.

 Physical Breakdown

The physical breakdown can be performed by analyzing:

 The source code: a physical element is a file or a directory in that case;

http://xerces.apache.org/xerces-c/
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Reliability
https://github.com/google/googletest

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 18 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

 The binaries: a physical element is called a component and can be a library or an executable in

that case.

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 19 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

PV-FILEHIERARCHY-SOURCECODE

Primary Presentation

Element Catalog / Description

OpenViBE code source tree consists of the following directories:

applications: contains utility applications for developers and testers

- openvibe-scenario-player is used to play simple scenario or to execute test use cases described

in a command file;

- openvibe-id-generator is used to generate unique identifier;

cmake-modules: contains cmake FindOpenViBEXXX modules used to import OpenViBE modules internally

when a module depends on another one, cmake FindXXX modules for external dependencies, other cmake

helper scripts.

common: contains some common include files defining common type that should be used within the

framework (ov_common_types.h), common utility preprocessor definition

(ov_common_defines.h) and shared box identifiers (ovp_global_defines.h, see MSD for

details on identifiers).

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 20 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

documentation: contains all script and configuration files to generate doxygen documentation.

kernel: contains Kernel default and only implementation. It contains the implementations of all abstract

interfaces defined in include/kernel subdirectory of openvibe directory with some additional

classes necessary to the implementation.

modules: contains one directory for each low-level modules as defined in LV-PACKAGEDIAGRAM-

FUNCTIONALBREAKDOWN.

openvibe: conatains APIs abstract interfaced and base framework:

- include/openvibe/kernel directory contains all kernel-related abstract interfaces that any

kernel implementation must implement

- include/openvibe/plugins directory contains box and algorithm abstract interfaces that must

be implemented within plugins to implement a box or an algorithm.

- include/openvibe and src directories contain framework base classes and interfaces.

plugins: contains all plugins. For instance plugins/processing/classification contains

implementations of all boxes and algorithms related to classification.

scripts: contains build and install scripts.

toolkit: contains implementation of all toolkit services.

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 21 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

PV-COMPONENTDIAGRAM-BINARIES

Primary Presentation

Element Catalog / Description

<<lib>> : static library (.a/.lib) OR shared/dynamic library (.so/.dll) dynamically linked at runtime but

statically aware (the libraries must be available at compile/link time.

<<DL lib>> : shared/dynamic library loaded/unloaded at runtime programmatically using the loader

system function.

<<exe>>: Executable.

 (No caption plain line): Means the component provides the API.

In this diagram, the scenario player application is chosen as end-user application.

To differentiate this perspective from the functional one, the term component is used to refer to an

element instead of module.

The application has to load the openvibe-kernel component at runtime. It then uses the Kernel

API to take advantages of Kernel services (creating/running pipeline). The openvibe-kernel

component is responsible for loading the plugin components at runtime (a single plugin is shown for the

sake of clarity). Each plugin can contain boxes and/or algorithms that are used through the Plugin API

(different interfaces are used for boxes and algorithms).

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 22 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

A plugin can use the openvibe-toolkit component and the openvibe-kernel component

through their API. Moreover, it can use the Plugin API in some specific cases: a box manipulating an

algorithm or an algorithm manipulating another algorithm (but a box manipulating a box is forbidden).

All components can use low-level modules. The diagram just shows one of the existing module component

but each component provides its own API.

Notes

The base framework component openvibe <<lib>> is not shown for the sake of clarity but can be

used by the kernel, the toolkit and the plugins components.

Dependencies components are not shown on the diagram.

- expat <<lib>> is used by module openvibe-xml-module.

- xerces-c <<lib>> is used by FileIO plugin.

- boost <<lib>> can be used by any component.

- eigen and some boost components are header-only.

 Mapping

The following table presents the mapping between functional and physical elements. FileIO plugin has

been chosen as an example for the mapping of plugins but the behavior is the same for all plugins.

Functional Module Binary Component Source Code File/Directory
(relative to OpenViBE root unless otherwise stated)

OpenViBE Base
framework

openvibe ./openvibe/include/openvibe

./openvibe/src

Plugins NA: header-only ./openvibe/include/openvibe/plugins

Kernel openvibe-kernel

dynamically loaded

Interfaces:
./openvibe/include/openvibe/kernel

Implementation:
./kernel

OpenViBEToolkit openvibe-toolkit ./toolkit

Date openvibe-module-date ./modules/date

EBML openvibe-module-ebml ./modules/ebml

FS openvibe-module-fs ./modules/fs

Socket openvibe-module-socket ./modules/socket

System openvibe-module-system ./modules/system

XML openvibe-module-xml ./modules/xml

CSV openvibe-module-csv ./modules/csv

FileIO (plugin example) openvibe-plugins-file-io

dynamically loaded

Interfaces for box and algorithms:

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 23 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

./openvibe/include/openvibe/plugins

Implementation:
./plugins/processing/file-io

Eigen NA: header-only library Windows:
./dependencies/eigen

Linux (relative to system root):
/usr/include/eigen3

Expat libexpat Windows:
./dependencies/expat

Linux (relative to system root):
/usr/include/expat*.h

Boost libboost_xxx

(compiled components)

Windows:
./dependencies/boost

Linux (relative to system root):
/usr/include/boost

XercesC libxerces-c Windows:
./dependencies/xerces-c

Linux (relative to system root):
/usr/include/xercesc

gtest Libgtest

Windows:
./dependencies/gest

Linux (relative to system root):
/usr/include/gtest

CertiViBE - 1.0

Software Design Description

CERT-01 SDD-01 Page 24 / 24

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

6. Appendices

 Architectural View Template

IDENTIFIER // ViewType_DiagramType_ID

Primary Presentation // Main Diagram

Element Catalog / Description // Diagram legends and description

Package1: This package is responsible for…

Package2: This package is responsible for…

…

Notes // Note on the view (why this element was eluded etc.)

Rationale // Architectural decision justification

SRS Requirement number XXX // Reference to requirements

This decision was made for maintainability. // Explanatory sentence

