

INRIA INNOVATION LAB

CERTIVIBE

V1.0

MODULES DETAILED DESIGN SPECIFICATIONS

Document Approval

 Name Function Date

Originated by
Charles

Garraud
Development team 12/01/2015

Reviewed by Cédric RIOU Development team 21/09/2017

Approved by Benoît Perrin Project Manager 16/02/2018

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 2 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

HISTORY

Version Author Date Comments

01 CG 12/01/2015 Creation of document

02 CRIO 21/09/2017 Add some missing plugins in Plugins Components List section

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 3 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

TABLE OF CONTENTS

1. Document Information .. 5

1.1 Document Roadmap .. 5

1.1.1 Objectives .. 5

1.1.2 Document Overview .. 5

1.1.3 Document User Guide ... 6

1.1.4 References ... 7

1.1.5 Definitions ... 7

1.1.6 Abbreviations .. 7

1.2 Architectural View Documentation ... 8

1.2.1 View Description ... 8

1.2.2 Views Listing .. 8

2. System Data Structures ... 9

2.1 C++ Object Data Structures ... 9

2.1.1 Matrix .. 9

2.1.2 Stimulation Set .. 11

2.1.3 Memory Buffer .. 11

2.2 Stream Structures .. 11

2.2.1 Definition ... 11

2.2.2 Stream Structure Specification .. 13

2.2.3 Stream Hierarchy ... 14

2.2.4 Stream Encoding/Decoding ... 15

2.3 Structures Identification .. 19

3. System Logical Units .. 23

3.1 Plugin Mechanism ... 23

3.1.1 Plugin API ... 23

3.1.2 Plugin Callbacks ... 26

3.1.3 Plugin Management .. 26

3.2 Algorithm ... 27

3.2.1 Algorithm Prototype .. 27

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 4 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

3.2.2 Algorithm Core .. 27

3.3 Box Algorithm .. 29

3.3.1 Box Algorithm Prototype ... 29

3.3.2 Box Algorithm Core ... 30

3.4 Box Listener ... 32

4. Kernel Management .. 33

5. Algorithm Management .. 36

6. Scenario Management ... 40

6.1 Scenario Creation .. 41

6.2 Scenario Loading/Saving ... 46

7. Scenario Playback .. 47

7.1 Data Acquisition .. 47

7.2 Execution Workflow .. 48

7.3 Timing .. 57

7.3.1 Time Model ... 57

7.3.2 Time Representation ... 59

7.3.3 System Clock .. 59

8. Configuration Management .. 62

8.1 Configuration Token .. 62

8.2 Box Settings Customization ... 64

9. Log and Error Management .. 66

9.1 System Logging .. 66

10. Appendix .. 69

10.1 Stream Structure Specifications .. 70

10.2 Plugins Components List ... 80

10.3 Standard Configuration Tokens ... 84

10.4 Error Management Codes ... Erreur ! Signet non défini.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 5 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

1. Document Information

1.1 Document Roadmap

1.1.1 Objectives

The purpose of the document is to provide a detailed description of the software system.

As it is not possible to describe every single architecture decision, emphasis is put on:

 Architectural decision that are directly driven from SRS,

 Parts of the system that are difficult to apprehend.

If the automatically generated documentation and/or the code are clear enough to understand underlying

design choices, it might not be detailed in this document.

1.1.2 Document Overview

The document structure results from the functional overview presented in SDD.

The document is divided into subsections:

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 6 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

 provides information about the purpose and use of the document;

 Other sections present the software system from different perspectives.

In each section, some architectural views are presented as defined in SDD. Refer to $1.2.2 Views Listing

for the list of descriptive views provided in this document. Moreover, some paragraphs are emphasized

with identifiable icons:

Information section used to present an essential information.

Focus section used to focus on a particular aspect of the software.

1.1.3 Document User Guide

This document can be explored in different ways according to the stakeholder expectations:

 Software developers or scientist can browse all sections to get better understanding on how the

system works;

QA team members can explore

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 7 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

 to inspect the scope of the document check requirements are handled at detailed design level.

Different references can be found in the document:

 SRS-XXX identifiers are used to reference requirements (see SRS);

 RSK-XXX identifiers are used to reference risks;

 SDD-XXX identifiers are used to reference architectural views presented in SDD;

 MSD-XXX identifiers are used to reference architectural views presented in this document.

1.1.4 References

DOCUMENT # TITLE

93/42EEC Medical Device Directive

EN ISO 13485 Quality systems – Medical devices – System requirements for regulatory

purposes

EN ISO 14971 Medical Devices - Application of Risk Management to Medical Devices

EN ISO 62304 Medical Device Software - Software Life Cycle Processes

MEDDEV 2.1/6 January 2012 Qualification and Classification of standalone software

SRS Software Requirement Specifications

SDD Software Design Description

1.1.5 Definitions

See SDD.

1.1.6 Abbreviations

See SDD.

1.1.7 Tools

UML diagrams in this document were generated with plantUML that generates diagram from simple text

files.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 8 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

1.2 Architectural View Documentation

1.2.1 View Description

See SDD.

1.2.2 Views Listing

Views are given a unique incremental identifier (MSD-XXX) to be used as reference in other QA documents.

ID View Reference Description

MSD-XXX overview

…

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 9 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

2. System Data Structures

This chapter describes some transversal concepts related to data structures used across the system.

This two first sections deals with the description of the different kind of data structures that are

manipulated within the system. Two types of structures are currently involved:

 Data structures implemented as C++ classes are described in $2.1;

 Stream structures containing bit stream data are described $2.2. The information that is

transmitted from a box to another box in the pipeline is packaged into unit of data whose structure

complies with data layout formatting requirements (stream structures).

$2.3 Structures Identification deals with the identification process used to distinguish entities within the

framework. This concept is essential to the recognition and manipulation of any type of data structures.

2.1 C++ Object Data Structures

This section focuses on three fundamental objects that are manipulated across the system. These objects

are all part of the base framework as defined in SDD:

 Matrices, instances of CMatrix class and manipulated through IMatrix interface;

 Stimulation sets, instances of CStimulationSet class and manipulated through

IStimulationSet interface;

 Memory buffers, instances of CMemoryBuffer class and manipulated through

IMemoryBuffer interface.

2.1.1 Matrix

Matrices are multi-purposes data containers (e.g. EEG signal data container, feature vector data container)

that can be used within boxes as input/temporary/output data container.

Matrices are represented as a tensor with arbitrary number of dimensions, from 0 to up any n.

Matrix as input data container: boxes typically expect matrices with definite properties as input
data (e.g. dimensionality). These properties have to be checked programmatically within each
box.

Matrix can be stored into a file. The following view describes the storage format.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 10 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

IV-FILEFORMAT-MATRIX

Primary Presentation

Comments

header

[

 # example: dimension 1 of size 2

 [“label 11” “label 12”]

example: dimension 2 of size 3

 [“label 21” “label 22” “label 23”]

 …

dimension n

[“label n1” “label n2”]

]

buffer

[// -> dimension 1, label11

 [// -> dimension 2, labe21

 … // -> other dimensions

 [val1 val2] // dimension n

]

[// -> dimension 2, labe21

 …

 [val1 val2]

]

[// -> dimension 2, labe23

 …

 [val1 val2]

]

]

[// -> dimension 1, label12

 …

]

end of buffer

Element Catalog / Description

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 11 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Matrix files are divided into a header and a buffer section.

The header part is delimited by opening and closing brackets and contains one [] section per dimension:

- Each [] section contain the dimension labels;

- The number of label must match the dimension size (empty labels are allowed).

The buffer part is built recursively on n dimensions contained in [] sections with innermost dimension

being linearized.

2.1.2 Stimulation Set

Stimulation sets are more specific than matrices. They are specially used to contain a collection of

OpenViBE stimulations, each stimulation being represented by:

 An identifier (see $2.3 Structures Identification);

 A date;

 A duration.

OpenViBE stimulations were meant to represent sensory excitation used as trigger in EEG brain
signal experiments (e.g. light stimuli, beep). But its use was extended to represent any event
(e.g. keyboard press, labeling event, experiment management event).

2.1.3 Memory Buffer

Memory buffers are used as raw data bits container that can be manipulated with no specific care on

memory allocation. They are especially used to contain bit stream data transmitted between boxes (see

$2.2 Stream .

2.2 Stream Structures

2.2.1 Definition

As described in $3.3 Box Algorithm, boxes potentially receive input data, process them and send produced

output data to the next box in the pipeline.

A stream can be seen as a virtual pipe between two boxes with bit data transiting through the pipe into

fragmented chunks (i.e. packet). In the system, a stream is identified by a unique identifier and is defined

by the structure of data chunks allowed in the pipe (stream structure specification). The data structure is

defined using EBML (see EBML Specifications) and represents the formal description of the ordering and

meaning of bytes within a chunk (chunk data layout).

https://github.com/Matroska-Org/ebml-specification/blob/master/specification.markdown

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 12 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Streams are no C++ object.

Stream types just lead to structural specifications. This leads to significant architectural
consequences on the manipulation of input and output data by boxes (see $2.2.4 Stream
Encoding/Decoding).

This design choice allows the transmission of data over the network for remote/scattered
multiprocessing within a pipeline. Currently, the player does not take advantage of computation
distribution. However, the stream concept makes such distribution possible and easier because
box algorithms do not share information directly.

The transmission of data along the pipeline is a set of disconnected segments and not a flow as
a box can expect a given stream type as input and produces another stream type as output.

The following table describes the different stream types available in the system and the information it

aims at conveying.

Stream Type Data description

EBML Convey information about the stream type and version (not used
directly).

Streamed Matrix Convey information represented as Matrix.

Channel Localization Electrodes Cartesian coordinates information.

Channel Units Convey information about channel measurement units.

Feature Vector Convey feature vectors for classification purposes.

Spectrum Convey spectrum analysis results.

Signal Convey EEG signal data on multiple channels.

Stimulation Convey stimulation data.

Experiment Information Convey information on the experiment being conducted.

Acquisition Multiplexed stream conveying information of a Signal stream, a Channel
Localization stream, an Experiment Information stream, a Chanel Units
stream and a Stimulation stream. It is intended to be used by an
acquisition module to convert raw data to data usable in the processing
pipeline.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 13 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

2.2.2 Stream Structure Specification

The stream structure specifications for all stream types are available in $10.1 Stream Structure

Specifications.

A stream structure specification consists of 3 sections:

 The HEADER section describes the content of head chunks. Head chunks contain the necessary

runtime parameters needed to interpret payload data chunks. When a scenario is played, head

chunks are the first chunks to be propagated in the pipeline. Each box receives a head chunk with

the right structure (i.e. structure following the HEADER section of the stream structure

specification related to the expected stream type on this input) on each input, interprets it and

sends an output head chunk with the right structure on each output.

 The BUFFER section describes the content of payload chunks. Payload chunks contain data that

are interpreted thanks to header chunks. As long as a scenario is running, payload chunks are

propagated in the pipeline.

 The END section describes the content of tail chunks. Tails chunks are the last chunks propagated

in the pipeline.

Stream data can be saved in a file. The following view presents the file format used to record stream data.

IV-FILEFORMAT-STREAM

Primary Presentation

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 14 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Element Catalog / Description

The node structure corresponds to the following DTD-like representation:

declare header {

 DocType := "OpenViBE_Stream_File";

 EBMLVersion := 1;

 EBMLMaxIDLength := 10;

 }

 define elements {

 Header := 0x0040F59505AB3684C8D8 container [card:1;] {

 Compression := 0x00C0358769166380D1 uint;

 Stream := 0x00F32EC1D1FE904087 uint [card:*;];

 }

 Buffer := 0x00AE60AD1887A29BDF container [card:*;] {

 StreamIndex := 0x00B0A56D8AB9C12238 uint [card:1;];

 StartTime := 0x00893E6A0AC5A9467B uint [card:1;];

 EndTime := 0x00408B5CCCD9C5024F29 uint [card:1;];

 Content := 0x00408D4B0BE87051265C binary [card:1;];

 }

 }

2.2.3 Stream Hierarchy

Streams are organized in a hierarchical manner with attributes from a
parent stream being inherited by its children streams. As a result, a stream
expecting data with a structure complying with the specification related to
a parent stream type will also accept data with a structure complying with
the specification related to children stream types. This is an essential
feature of streams as it affects the connection rules during pipeline
creation (see $0

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 15 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Scenario Management).

The following view presents the hierarchical organization of stream types.

LV-STREAMHIERARCHY

Primary Presentation

Element Catalog / Description

The base EBML stream is not used directly.

Example of the consequence of this hierarchy:

A box with one input expecting data chunks complying with StreamedMatrix stream structure specification

will allow data chunks following Signal stream structure specification.

As streams are no C++ objects, the stream hierarchy is not a class hierarchy in an object-
oriented sense. The stream hierarchy is reflected at the codec level (see 2.2.4 Stream
Encoding/Decoding).

2.2.4 Stream Encoding/Decoding

As stated in the previous section, data is transmitted between boxes as chunks of raw bits with each chunk

layout following structural specification. However, boxes do not manipulate raw bits internally but C++

objects. Thus, object data produced by boxes have to be converted into raw memory buffers before

transmission to the next box (encoding) and incoming raw memory buffers have to be converted into

object-data (decoding).

These coding/decoding tasks are performed through a set of codec algorithms (see $3.2 Algorithm for

details on algorithms) that are responsible for the implementation of stream structure specifications. For

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 16 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

each stream type, there is a corresponding encoder and decoder class so that the encoder/decoder class

hierarchy mirrors the one defined in $2.2.3 Stream Hierarchy.

Typical encoder properties are:

 Input: Header section data + buffer section data (e.g. Matrix, Stimulation Set)

 Output: Memory buffer

Typical decoder properties are:

 Input: Memory buffer

 Output: Header section data + buffer section data (e.g. Matrix, Stimulation Set)

The implementation of codec algorithms are part of the openvibe-plugins-stream-

codecs component.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 17 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

EBML Module

As stated in previous sections, stream types are defined using EBML. Codec algorithms rely on
openvibe-ebml-module component to parse/serialize stream data. This module uses a
strategy-like pattern to implement the following callback mechanism:

 IReader/IWriter are the context interfaces and CReader/CWriter the context
implementations whose behaviors vary according to the parsing/serializing strategy;

 IReaderCallback/IWriterCallback are the strategy interfaces supplied to
the context to perform tasks specific to the EBML structure to parse/serialize.

Codec algorithms use the module as follows:

 Either the codec algorithm is the strategy (by inheriting strategy interface) or

instantiates an object (TReaderCallbackProxy1/TWriterCallbackProxy)
that acts like the strategy and keeps a reference on the codec algorithm;

 The codec algorithm instantiates a new reader/writer context with itself or the proxy
as strategy;

 The codec algorithm forwards parsing/serializing to the reader/writer context.

Encoding/decoding is not performed at kernel level and must performed programmatically within each

box. As the use of codec algorithms can be tedious, openvibe-toolkit component provides a

wrapper API that eases the use of these algorithms from boxes.

The wrapper API uses mixin/parametrized inheritance (see SDD) to implement a hierarchy of wrappers

matching the codec hierarchy. T

The following view shows the inheritance hierarchy for a signal stream decoder openvibe-toolkit

module. Note that the behavior is similar for the encoding process and for other stream types.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 18 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

LV-CLASS-DIAGRAM-CODECTOOLKIT

Primary Presentation

Element Catalog / Description

Every class is templated with its superclass as parameter starting with the most basic class: TCodec. A

box algorithm uses toolkit by declaring an object of type: TSignalDecoder<BoxAlgorithm>.

Feeding codec algorithms with the client box is necessary to enable access to the box context by the codec

API.

TCodec: Base abstract class for encoder and decoder. This class contains a reference to the client box

algorithm and a reference to the codec algorithm that does the effective work.

TDecoderLocal: This class contains the partial implementation of TCodec interface common to all

decoders (storage for the input memory buffer and high level methods decodeHeader,

decodeBuffer and decodeEnd implementation called by boxes to decode input chunks). The

decoding step involves filling the input memory buffer with incoming chunks, decoding it and marking

input as deprecated.

TSignalDecoderLocal/TStreamedMatrixDecoderLocal: This class contains the

implementation of TCodec interface specific to the decoded stream type (storage for specific output

parameters). The right codec algorithm is selected at this level.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 19 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

2.3 Structures Identification

The system uses 64-bits identifiers (CIdentifier class) to identify any entities in the framework. The

following table presents typical uses of identifiers within the framework. Identifiers can be hardcoded or

randomly generated. Each time an identifier is generated, the generator prevents from duplicated

identifiers in the scope of their use. Duplicated identifiers prevention or assertion are managed inside each

use scope.

Role Use Definition Location
(relative to OpenViBE root unless otherwise stated)

Box class identifiers used
for box types (see $3.3.1
Box Algorithm Prototype)
Ex: OVP_ClassId_BoxClass

Used internally in
boxes
implementation.

Used indirectly by the
plugin manager to
create the right box
instance.

Either in ovp_defines.h of the right plugin
module or in the box algorithm declaration
header file.

Stream type identifiers
used for streams (see
$2.2 Stream Structures)
Ex:
OV_TypeId_Signal

OV_TypeId_EBMLStream

Used in box
input/output type
identification.

Used for box
connection
compatibility check.

Used in stream
castability check (see
$2.2.3).

Registered in type
manager (see focus
below).

Definition:
./openvibe/include/openvibe/ov_defines.h

Registration:
./kernel/src/kernel/ovtkCKernelContext.cpp

Box settings global
identifiers
Ex:
OV_TypeId_Boolean

(simple type)

OV_TypeId_Stimulation

(enum type)

OV_TypeId_LogLevel

(enum type)

Used to identify the
type of string-based
box settings (see
$3.3.1).

For enum type, there
is an additional
identifier for each
enum value.

Definition:
./openvibe/include/openvibe/ov_defines.h

Registration:
./kernel/src/kernel/ovtkCKernelContext.cpp

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 20 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Registered in type
manager (see focus
below).

Box settings specific
identifiers

Same as above but
only used internally in
plugins to identify
specific string-based
settings.

Definition:
./plugins/xxx/src/ovp_defines.h h

Registration:
./plugins/xxx/src/ovp_main.cpp

Stimulation type
identifiers
Ex:
OVTK_Stimulation_Id_Beep

Used to define
stimulation types in
set (see $2.1.2) and as
possible enum values
for settings of type
OV_TypeId_Stimulation (see
Box settings global
identifiers).

Registered in type
manager (see focus
below).

Definition:
./toolkit/include/toolkit/ovtk_defines.h

Registration:
./toolkit/src/ovtk_main.cpp

Algorithm class identifiers
used for algorithm types
$3.2 Algorithm)
Ex:
OVP_GD_ClassId_Algorithm

_X

OVP_ClassId_Y

Used internally in
algorithms
implementation.

Used by external code
(code from another
plugin, application) to
query the algorithm
manager (see $0) for
algorithm creation.

2 preprocessor definitions refers to the same
identifier:

One for internal use:

Either in ovp_defines.h of the plugin or in the
algorithm declaration header file.

One for external use:
./common/include/ovp_global_defines.h

Algorithm parameters
identifiers

Used internally in the
algorithm
implementation.

Used by external code
(code from another
plugin, application) to
query the algorithm
parameters from an
algorithm instance.

2 preprocessor definitions refers to the same
identifier:

One for internal use:

Either in ovp_defines.h of the plugin or in the
algorithm declaration header file.

One for external use:
./common/include/toolkit/ovp_global_defines.h

Kernel, Plugin and base
class identifiers

Used mainly for
introspection.

./openvibe/include/openvibe/ov_defines.h

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 21 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Ex: OV_ClassId_Matrix
OV_ClassId_Plugins_Algor

ithm

Attribute Identifiers Used to add or
retrieve attributes
from attributable
classes at runtime (see
$0 for information on
attributability).

./openvibe/include/openvibe/ov_defines.h

Stream Node

Identifiers

Used by codec
algorithms to identify
nodes in the EBML
structure.

./toolkit/include/toolkit/ovtk_defines.h

Measurement Units
Identifiers

Used by channel
measurement units
codec algorithms to
identify measurement
units.

./toolkit/include/toolkit/ovtk_defines.h

ovp_global_defines.h is auto-generated by the plugin inspector that inspects all plugins
to generate global defines usable by other modules.

Type Manager

The table above mentions the fact that some types are registered in the type manager. As
explained in SDD, the kernel provides its services through a set of managers accessed via
IKernelContext interface. The type manager (interface ITypeManager) is mainly used
to:

 Handle string-based box settings simple types:
o Types are registered in the manager;
o The manager can be queried for type existence or to convert type identifier

into string.

 Handle string-based box settings enum types:
o Types are registered in the manager;
o Enum values are registered in the manager;
o The manager can be queried to retrieve enum entries.

 Handle stream types:
o Types are registered in the manager with the parent type;
o The manager can be queried for stream type existence or stream castability.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 22 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 23 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

3. System Logical Units

The previous chapter focuses on structures that contain data. Once data are available, the main purpose

of the system is to process them. This chapter deals with the entities responsible for performing processing

on data: the logical units.

There are three types of logical units within the system:

 Algorithms are generic low-level components that perform operations on data (ex: algorithm to

read file, algorithm to encode/decode stream). It can be used by box algorithms, other algorithms,

the Kernel module or applications based on OpenViBE;

 Box algorithms are the processing engines each box relies on;

 Box listeners are logical units responsible for performing specific actions when boxes state

changes.

Implementation of algorithms, box algorithms and box listeners are part of the plugin mechanism that is

presented in the next section.

3.1 Plugin Mechanism

In SDD, it is explained that a plugin can contain multiple components definitions.

A plugin component definition consists of:

 A descriptive part: description of the component metadata (author, name etc.) and prototype

(input, output, parameters);

 An operational part: definition of the logical unit actually responsible for performing operations

on data.

A plugin gathers together a set of component definitions that aim at providing a specific service or a

coherent set of services (ex: classification plugin with classification related algorithms and box algorithms).

The list of plugins components is available in appendix ($10.3 Standard Configuration Tokens).

The base requirement for a plugin mechanism is to make the application responsible for loading the

plugins able to communicate with them. It is achieved through published interfaces that must be

implemented by plugin components and a set callbacks provided by each plugin and used as an entry point

by plugin loaders to explore the plugin content.

3.1.1 Plugin API

The following view presents the set of interfaces that must be implemented by plugins components.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 24 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

LV-CLASSDIAGRAM-PLUGINAPI

Primary Presentation

Element Catalog / Description

The plugin object descriptor interfaces are implemented to fulfill the descriptive part of component

definition while the plugin object interfaces are implemented to fulfill the operational part of

component definition.

IPluginObject: Base interface for algorithms or box algorithms operational definition.

IAlgorithm: Base class for algorithms operational definition. Implementations of this interface aim

at containing the algorithm logic (basically reading from input, computing data to produce and writing

to output) divided into three steps: initialization, processing, and uninitialization (see $3.2 Algorithm).

IBoxAlgorithm: Base class for box algorithms operational definition. Implementations of this

interface aim at containing the box algorithm logic (basically reading from input, computing data to

produce and writing to output) divided into three steps: initialization, processing, and uninitialization

(see $3.3 Box Algorithm).

IBoxListener: Base class for box listeners. Implementations of this interface aim at performing

specific actions related to boxes on notification (see $3.4 Box Listener).

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 25 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

IPluginObjectDesc: Base interface for algorithms or box algorithms descriptive definition.

Implementations of this interface aims at providing metadata information about the logical unit. They

must also implement the method responsible for creating instances of plugin object classes.

IAlgorithmDesc: Base interface for algorithms descriptive definition. Implementations of this

class must implement the method responsible for providing the algorithm prototype to external

modules (e.g. the Kernel module).

IBoxAlgorithmDesc: Base interface for box algorithms descriptive definition. Implementations of

this class must implement the method responsible for providing the box algorithm prototype (input,

output and settings) to external modules (e.g. the Kernel module) and, optionally, implement the

method responsible for box listener class instances creation.

The plugin mechanism is designed so that the plugin loader loads and manipulates descriptors.
These descriptors provide enough information to let the system know how the logical unit is
structured. Moreover, these descriptors are also responsible for providing instances of the
actual processing class to the system. It has some consequences especially for box algorithm:

Box algorithm descriptors provide enough structural information
to create a scenario (see $0

 Scenario Management);

 Creation of a plugin object instance is just needed when a scenario is played (see $7
Scenario Playback) and boxes have to process data.

Algorithm, box algorithm and box listener implementations should not inherit directly from

IAlgorithm and IBoxAlgorithm. The openvibe-toolkit component provides wrappers
classes (TAlgorithm, TBoxAlgorithm and TBoxListener) that implement
IAlgorithm, IBoxAlgorithm and IBoxListener context related calls and provides
to subclasses a controlled access to context features. They act as guards to prevent misuse of
the context at the algorithm implementation level.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 26 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

3.1.2 Plugin Callbacks

Providing a plugin API allows the loader to manipulate and communicate with plugin components. But

before any communication is setup, the loader must be aware of what components are available in a

plugin.

As explained in SDD, plugins are dynamically loaded libraries. The plugin content discovery relies on a set

of callbacks that each plugin must provide in order to be explorable. The dynamic loader looks for the

following callbacks at runtime:

 onInitialize is responsible for registering all the components provided by the plugin;

 onUninitialize is responsible for releasing the component list;

 onGetPluginObjectDescription is responsible for retrieving plugin descriptors.

These callbacks are defined in the ovp_main.cpp file of each plugin through a macro mechanism. The

use of these callbacks by the dynamic loader is described in the next section.

3.1.3 Plugin Management

Once a list of plugins is available, the system needs a way to load them at runtime. Plugin management is

part of the Kernel module and dedicated to the plugin manager (CPluginManager). This class is

responsible for:

 Loading plugins;

 Managing plugin object lifetime (plugin object creation and destruction);

Internally, it relies on a CPluginModule objects and their platform-specific implementations to load

plugins at runtime.

CPluginModule instances first look for the callback symbols (described in previous section) in a

dynamically loaded library. Then, it calls the onInitialize callback so that the list of plugin

components is created. Eventually, it loops plugin's onGetPluginObjectDescription callback to

get each registered component description.

FS Module

The plugin manager relies on openvibe-fs-module component to retrieve the list of

plugins from a wildcard path (e.g. path/to/plugin/*.so). The fs module uses a visitor-like
pattern to enumerate paths (called entries) that match a given wildcard pattern and perform
specific processing on each match. Example of use with by plugin manager:

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 27 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

 The plugin manager implements a specific callback class to process new entry (path to
plugin) in a callback method;

 An instance of the specific callback class is given to the fs module enumerator;

 The enumerator enumerates paths that match the plugin path pattern and calls the
specific callback class callback method that tries to load the plugin and add it to the
plugin manager module list.

3.2 Algorithm

An algorithm can be viewed from different perspectives. The Black Box view, which describes the algorithm

interfaces, is presented in the first section Algorithm Prototype. The second section, Algorithm Core,

discusses the internal logic of algorithms.

3.2.1 Algorithm Prototype

Algorithm interfaces description is called algorithm prototype in the system.

Prototypes are characterized by the definition of the following properties:

 Input/Output parameters: each algorithm defines a number of I/O parameters characterized by a

unique identifier (see $2.3 Structures Identification), a name and a type;

 Input/Output triggers: each algorithm defines a number of I/O triggers characterized by a unique

identifier and a name. Input triggers are used to control the algorithm (ex: “Process“) while

output triggers represent events risen by the algorithm (ex: “Processing Done“). Triggers

definition consists of the specification of messages that can be exchange between the algorithm

and, typically, the Kernel module. However, the real exchange of messages at runtime is perform

by activating a given trigger.

Algorithm prototypes are defined in algorithm descriptors (see $3.1.1 Plugin API) through the

IAlgorithmProto interface.

3.2.2 Algorithm Core

Algorithm logic is implemented in plugin object classes which must implement TAlgorithm interface as

stated in $3.1.1 Plugin API.

Algorithm logic is implemented through three methods:

 initialize: mainly used to initialize algorithm input and output parameters as well as for

resources allocations;

https://en.wikipedia.org/wiki/Black_box

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 28 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

 uninitialize: used for cleaning up input and output parameters as well as for releasing

resources allocations;

 process: used to perform operations on input data according to input triggers, produce ouput

data and rise output triggers.

Algorithms make use of the execution context (IAlgorithmContext) provided by TAlgorithm

interface. This context gives access to kernel managers, algorithm I/O parameters and active input triggers,

and, provides features to control output triggers activation.

Algorithm Parameters

Algorithm parameter types are defined in ovkCParameter.h. Each parameter implements
a set of interfaces linearized using mixin inheritance (see SDD for details on mixin inheritance).

Example for matrix-type parameter:
CMatrixParameter -> TBaseParameter -> TKernelObject -> IParameter ->

IKernelObject -> IObject

TBaseParameter is an implementation of IParameter. The main purpose of these
classes is to provide some sort to type erasure. This convenience enables a uniform

management of input and output parameters through the IParameter interface without
concern for the real type they contain.

Algorithms access their own I/O parameters via the algorithm context provided by

TAlgorithm interface. Other algorithms I/O parameters are accessed via
AlgorithmProxy interface (see $5 Algorithm Management). Parameters are returned as
IParameter pointers. As manipulation of IParameter is error-prone, algorithm

parameters should be manipulated through TParameterHandler objects that are typically
initialized in the initialize method.

Example:

class MyAlgorithm : public

OpenViBEToolkit::TAlgorithm<OpenViBE::Plugins::IAlgorithm>

{

 …

 OpenViBE::Kernel::TParameterHandler<OpenViBE::CString*> m_Input;

 …

 void initialize()

 {

 m_Input.initialize(this->getInputParameter(ParameterId));

 }

}

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 29 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

3.3 Box Algorithm

Box algorithm concept can be analyzed from the same perspectives as algorithm concept. The Black Box

view, which describes box algorithm interfaces, is presented in the first section Box Algorithm Prototype.

The second section, Box Algorithm Core, discusses box algorithms internal logic.

3.3.1 Box Algorithm Prototype

Box algorithm interfaces description is called box algorithm prototype in the system.

Prototypes are characterized by the definition of the following properties:

 Input/Outputs: box algorithms define a number of inputs and outputs characterized by a name

and a type. I/O types are meant to be stream type (see $2.2 Stream) represented by a unique

identifier (see $2.3 Structures Identification for stream type identifier);

Box input and output can be referred as connector or port in the context of box connection.

 Settings: box algorithms define a number of settings characterized by a name, a type represented

by a unique identifier (see $2.3 Structures Identification for box settings identifiers) and a default

string-based value. Settings are used to customize box algorithm behavior.

 Flags: box algorithms set a number of flags that represent true/false conditions. Theses flags

represent box options that can be set or cleared. Flags can deal with prototype modification

permissions given to the Kernel (see $3.4 Box Listener) or simple implementation state (e.g.

informing box algorithm users that a box is deprecated or unstable).

Box algorithm prototypes are defined in descriptors (see $3.1.1 Plugin API) through the IBoxProto

interface.

String-based settings value

Settings values are set as string (although settings are given an expected type) so that they can
be straightforwardly serialized. The main goal is to be able to set settings values as configuration
tokens in a configuration file. So, it is possible to customize a runtime session without any
scenario modification.

Adding inputs, outputs and settings is done in sequence. As a result, indexes used to access
them afterwards match the declaration order in the descriptor.

https://en.wikipedia.org/wiki/Black_box

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 30 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

3.3.2 Box Algorithm Core

Box algorithms logic is implemented in plugin object classes that should implement the TBoxAlgorithm

interface as stated in $3.1.1 Plugin API.

Box algorithm logic is implemented through a set of fundamental methods:

 initialize: mainly used to initialize and retrieve box algorithm settings, initialize internal

algorithms and connect algorithms inputs and outputs.

During initialization, internal algorithms can be chained simply by binding input to output. Here

Typical example where an encoder input is connected to decoder output:

void initialize()

{

 …

 m_SignalEncoder.getInputMatrix().setReferenceTarget(

 m_SignalDecoder.getOutputMatrix()

);

 …

}

Note that a given algorithm output can feed multiple algorithms input.

 uninitialize: used for cleaning up resources;

 processClock: callback called periodically by Kernel module. It is used for box algorithms whose

processing is not triggered by data available on one of to their inputs (time-driven box algorithm);

 processInput: callback called by Kernel module each time data is available on one of the box

algorithm input (data-driven box algorithm). Box algorithms decide if the processing should be

triggered or not (e.g. a box algorithm with two inputs can wait to have data available on the first

AND the second before it triggers the processing);

 process: perform the actual processing job. This callback is triggered only if the box algorithm

informs Kernel module it is ready to process.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 31 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Box algorithms expect streams as inputs and outputs but needs to manipulate regular objects
within the processing step. As explained in $2 System Data, they rely on codec algorithms for
that. This leads to significant consequences on box algorithm core implementation:

 initialize callback almost always contains code to initialize codec algorithms;

 process callback workflow always include decoding and encoding steps.

Note that each box algorithms input/output must have its own decoder/encoder instance.

A typical processing workflow follows these steps:

 Kernel module calls box algorithms initialize callbacks:

o Internal algorithms are initialized;

o Algorithms inputs and outputs are connected;

o Box algorithm settings are retrieved.

 Kernel module calls processClock/processInput callbacks periodically:

o Once ready, box algorithms inform the Kernel module that they are ready to process.

 Kernel module calls the process callbacks on box algorithms ready to process:

o Box algorithms retrieve the dynamic context that gives access to data waiting on their

inputs and allows to write data on outputs;

o For each chunk of data available on their inputs:

 The chunk is decoded;

The nature of the chunk is analyzed (head, buffer, tail chunk as described in $0

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 32 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

 Stream Structure Specification) and processing is performed accordingly:

 Head and tail chunks are re-encoded directly and sent to outputs;

 Payload chunks are processed, output data produced, encoded and sent

to outputs.

Box algorithms make use of the box algorithm execution context (IBoxAlgorithmContext)
provided by TBoxAlgorithm interface to access kernel services and communicate with the
Kernel module.

Note that box algorithms have restricted access to Kernel features and cannot directly share
information with other box algorithms.

3.4 Box Listener

As stated in $3.1.1 Plugin API, boxes can rely on box listeners to perform specific actions on event

notification. Box listener mechanism is specially implemented to react to box modifications by the Kernel

module.

The set of events a listener can react to is defined by EBoxModification enum. It is closely related to

flags that are set in box algorithms prototype. In a nutshell:

 Flags define the modifiability of a box by the Kernel module:

 Can the Kernel modify inputs/outputs/settings?

 Can the Kernel add inputs/outputs/settings?

 Listeners define the reaction to boxes modification by the Kernel module;

 The kernel module performs authorized modifications and notify the listener (if available).

Listeners implements TBoxListener interface and override only “reaction” they want to customize.

Note that defining a box listener is optional.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 33 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

4. Kernel Management

The kernel module is the central module of the system. As it is explained in SDD, it provides the base

services to build and play scenarios. Previous and next chapters describe some of these services ($3.1.3

Plugin Management, $5 Algorithm Management, $6 Scenario Management and $7Scenario Management

Scenario Playback). This chapter details how the kernel services are made available to Kernel consumers

(i.e. client code).

The Kernel component is loaded at runtime by a specific class (CKernelLoader, part of OpenViBE Base

framework as described in SDD).

Why is the kernel a dynamic loaded (DL) library?

The idea is to be able to use different Kernel implementations without the need to recompile
the system. At compile-time, only the set of Kernel interfaces (abstract classes) is used by Kernel
consumers. At runtime, the DL library containing an implementation of these interfaces is
loaded and provide a definition for all required symbols.

Currently, only one default Kernel implementation is available in the framework.

Kernel loading follows the same principles as plugins loading. The dynamic loader is looking for a set of

callbacks:

 onInitialize is responsible for initializing resources;

 onUninitialize is responsible for releasing resources;

 onGetKernelDesc is responsible for retrieving the kernel descriptor. The descriptor is used to

generate the kernel context (IKernelContext implementation). Once the kernel context is

created and initialized, it is the access point to all managers (algorithm, configuration, player,

plugin, scenario, type, and log manager) and, thus, to all services.

Definition of these callbacks as well as Kernel descriptor implementation are available in

ovk_main.cpp.

The following views describes the sequence of calls that leads to kernel context creation and retrieval.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 34 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

BV-SEQUENCEDIAGRAM-KERNELLOADING

Primary Presentation

Element Catalog / Description

Call to load with the path to the Kernel DL library triggers the search for callbacks by the kernel loader.

Then, the two next calls are just forwarded to corresponding callbacks (initialize ->

onInitialize and getKernelDesc -> onGetKernelDesc).

4.1 Once the Kernel descriptor is retrieved, it is mainly used to generate an instance of the Kernel context.
The createKernel call is crucial because it feeds the context with the path to the configuration file

(see $7.4 Scenario Player application
Scenario player is the application responsible for loading and playing a scenario using a command line

without launching any graphical user interface.

Here are available options of the application:

Option Description Mandatory

--command-file Path to command file (command
mode only)

Yes

--config-file Path to configuration file (express
mode only)

No

--dg Global user-defined token: -
dg="(token:value)" (express mode
only)

No

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 35 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

--ds Scenario user-defined token: -
ds="(token:value)" (express mode
only)

No

--max-time Scenarios playing execution time
limit (express mode only)

No

--mode Execution mode: 'x' for express,
'c' for command

Yes

--play-mode Play mode: std for standard and ff
for fast-foward (express mode
only) [default=std]

No

--scenario-file Path to scenario file (express
mode only)

Yes

4.1.1 Scenario player execution workflow

A straightfoward commands workflow is built according to command-line (or a command file).

Configuration Management).

Initializing the kernel context instance can be delayed. It will automatically be performed on the first call

to any context method. However, it is important in most case to initialize the toolkit module from the

created context (OpenViBEToolkit::initialize).

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 36 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

5. Algorithm Management

One of the services provided by the Kernel module is the management of algorithms.

As stated in section $3.2 Algorithm, algorithms are low-level logical units that can be used within boxes,

by the Kernel or by an application to perform specific tasks. Once algorithms are loaded (see $3.1 Plugin

Mechanism) and usable, an interface is needed to manipulate these specific objects. The Kernel module

provides a set of classes to manipulate algorithms centered on the algorithm manager

(CAlgorithmManager) which is responsible for creating and destroying algorithm instances.

Use of an algorithm follows a rather typical sequence:

 Algorithm creation;

 Algorithm initialization;

 Processing;

 Algorithm uninitialization;

 Algorithm release.

The following view describes some steps of the sequence above in details..

BV-SEQUENCEDIAGRAM-ALGORITHMUSE

Primary Presentation

Creation

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 37 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Initialization

Processing

Release

Element Catalog / Description

Creation

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 38 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Algorithms are plugin components. As described in $3.1.3 Plugin Management, the plugin manager is in

charge of managing plugin object instances lifetime. Thus, the scenario manager forwards the creation of

algorithm objects (i.e. IAlgorithm instances) to the plugin manager. Internally, the algorithm manager

wraps created algorithm object instances in CAlgorithmProxy objects.

CAlgorithmProxy objects are responsible for exposing an algorithm prototype

(inputs/outputs/triggers) to Kernel consumers and supervising calls to algorithm processing-related

methods (i.e. creating the algorithm context needed by algorithms to perform their tasks (see $3.2.2

Algorithm Core), calling initialize/uninitialize/process methods of the algorithm and

handling potential errors).

An algorithm object identifier (see $2.3 Structures Identification) is returned back to Kernel consumers so

that he can use it to retrieve a handle on a proxy object afterwards.

Initialization, Process:

Calls are forwarded from proxy objects to algorithm objects. CAlgorithmProxy objects create a new

algorithm context for each new call to the underlying algorithm.

 As the context is only valid during a single call to the underlying algorithm, implementation of

algorithm logical units should not store the algorithm context for a later use.

Release

This is the creation step inverse operation. Algorithm managers are, as other managers, resources

managers. The createAlgorithm method is paired with a releaseAlgorithm method. Note that

it is essential to release an algorithm once it has been used.

Notes

Uninitialization steps is not shown because it mirrors the initialization step.

Algorithm Parameters Handling

As it is presented in the previous view, CAlgorithmProxy instances are responsible for
exposing algorithm prototypes to Kernel consumers. To achieve that, CAlgorithmProxy
objects have to retrieve prototypes (see $3.2.1 Algorithm Prototype) from algorithm descriptors
to expose it to Kernel consumers.

This requirement is fulfilled through a temporary object (CAlgorithmProto). At

construction time, CAlgorithmProxy objects call getAlgorithmPrototype on
descriptors with this temporary object as parameter.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 39 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

CAlgorithmProto is a simple implementation of IAlgorithmProto that forwards each

call to the corresponding CAlgorithmProxy method. Therefore, each time an input, output
or trigger is added to a CAlgorithmProto, it is automatically added to the underlying
CAlgorithmProxy object.

Internally, CAlgorithmProxy handles the list of algorithm input and output parameters with

CConfigurable objects that are used to handle list of parameters.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 40 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

6. Scenario Management

As stated in SDD, one of the main aim of the system is the creation of personalized chains of processing. It

is achieved through one of the Kernel service dedicated to scenario management.

This service is centered on the scenario manager (CScenarioManager) which is responsible for

creating and destroying instances of scenarios. Scenario management involves:

 Scenario lifetime management;

 Scenario populating (adding boxes and connecting boxes);

 Scenario configuration;

 Scenario loading/saving;

This first section focuses on the creation and configuration of new scenarios while the second section

details scenarios storage capabilities.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 41 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

6.1 Scenario Creation

Scenario creation involves the manipulation of multiple objects. The following view presents the main

classes involved in scenario creation.

LV-CLASSDIAGRAM-SCENARIOMANAGEMENT

Primary Presentation

Element Catalog / Description

CScenarioManager: Kernel manager dedicated to scenario management. This class manages scenario

lifetime (creation, destruction) and handles scenario import/export. Internally, it maintains a list of

scenarios (CScenario).

CScenario: This class represents a scenario. At it is presented in SDD, a pipeline is a chain of processing

elements. This class implements this concept through a list of boxes (CBox, the “processing elements”)

and a list of links (Clink, the “chains”). This class provides an interface to build the pipeline by adding

new elements and connecting them.

CBox: This class is responsible for exposing boxes prototype (inputs/outputs/settings) to Kernel

consumers. Actually, it is similar to the part of CAlgorithm (see $5 Algorithm Management) that

exposes algorithm prototype. Internally, it wraps a box algorithm descriptor and a box listener.

 Unlike CAlgorithmProxy class that wraps into one interface the exposure of the algorithm

prototype and the supervision of calls to the underlying algorithm processing methods, CBox just

implements the exposure part. The processing part is dedicated to another class that is presented in $7

Scenario Playback).

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 42 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

 Retrieval of the algorithm prototype by CAlgorithmProxy instances is explained in the focus

“Algorithm Parameters Handling - $5 Algorithm Management”. The behavior is similar for CBox instances

expect that the class involved in forwarding the prototype is CBoxProto. In addition to filling CBox

instances from box algorithm prototypes defined in box descriptors, CBoxProto creates some new

attributes (e.g. input count, output count). For instance, CBoxProto is responsible for converting box

algorithm flags to attributes (see TAttributable just below).

CLink: This class represents a connection between a box input and another box output.

TBox: This is the base class for scenarios and boxes. Both inherit TBox because both represent the

same Black Box concept.

TAttributable: This is the base class for “attributable” objects in the system. This very simple

implementation of the properties pattern allows (key, value) properties to be added to these objects at

runtime. Attributes are identified with 64-bits identifier (see $2.3 Structures Identification). CBoxProto

makes use of the “attributability” of CBox to handle flags (flags are transformed from an enum type to an

attribute identifier OV_AttributeId_Box_XXX) and add additional properties when it explores the

box algorithm prototype. CScenario “attributability” is also used in the system.

Notes

The primary presentation shows multiple inheritance artifacts for CLink, CBox and CScenario. At

implementation level, multiple inheritance is not implemented with the default C++ support but with

mixin inheritance as described in SDD.

The previous view shows the organization of Kernel classes regarding scenario management. The following

one presents the typical sequence of calls involved in scenario creation.

BV-SEQUENCEDIAGRAM-SCENARIOMANAGEMENT

Primary Presentation

Creation

https://en.wikipedia.org/wiki/Black_box

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 43 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Adding Boxes

Connecting Boxes

Element Catalog / Description

Creation

In the creation phase, the scenario manager is in charge of scenario creation. A scenario object identifier

(see $2.3 Structures Identification) is returned back to the Kernel consumer so that he can use it to retrieve

a handle on a scenario object (CScenario) afterwards.

Adding Boxes

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 44 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Once scenario handle is retrieved, populating the scenario is performed through the IScenario

interface. Adding a box involves the creation of a box object (CBox) given a box type (see $2.3 Structures

Identification for box class identifier). As it was described, a CBox object is a wrapper around a box

algorithm descriptor. As box algorithm descriptors are plugins components, the plugin manager is

responsible for managing their lifetime (see $3.1.3 Plugin Management). Therefore, the box forwards the

creation of the descriptor (i.e. IBoxAlgorithmDesc instances) to the plugin manager.

 To create a scenario, only box algorithm prototypes are needed as no processing is performed. That

is the reason why CBox objects only need a reference to their corresponding box algorithm descriptor.

 The box class identifier is needed to create a box. To retrieve the list of available box algorithm

identifiers, Kernel consumers can use getNextPluginObjectDescIdentifier method in a loop.

Feeding this method with OV_UndefinedIdentifier as first parameter and

OV_ClassId_Plugins_BoxAlgorithmDesc as second parameter returns the first box class

identifier and, from that, all identifiers can be retrieved. With an additional call to

getPluginObjectDesc in the loop, it is easy to retrieve the entire list of box algorithm descriptors.

The list of default box algorithms provided by the system to build a scenario is available in appendix ($10.3

Standard Configuration Tokens) and can be grouped in the following categories: Data Generation, Data

I/O, Classification, and Signal Processing.

 The system is distributed with a single LDA classifier. Although it is widely used for BCI, system end-

users might be interested in adding new classifiers to the framework. This is made very easy thanks to

base extension interfaces provide by the openvibe-toolkit component:

- CAlgorithmClassifier: should be inherited for binary classification;

- CAlgorithmPairingStrategy: should be inherited for multiclass (> 2) classification strategies.

Connecting Boxes

Connecting boxes is straightforward. The goal is to connect a box output (source box) to another box input

(target box). Kernel consumers must retrieve CBox object handles to get details on the output and input

they want to connect. From this information, the type manager can be queried to check output and input

are compatible. Finally, the connection operation is performed and the created connection is stored in a

CLink object within the scenario.

Notes

Sequence diagrams are high-level representation of the exchange of calls between entities. Therefore,

when the diagram shows a return call with an object, it does not imply the called entity returns the object

by value in C++. It means that this object is returned in some manner to the caller (e.g. return value,

reference parameter etc.).

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 45 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Scenarios creation within the system is flexible. However, there are some rules scenarios have to comply

with to ensure playing a scenario will be stable and reliable at runtime. The following view describes some

of this connection rules.

LV-ACTIVITYDIAGRAM-CONNECTIONRULES

Primary Presentation

Element Catalog / Description

The primary presentation shows an example of scenario with boxes and connections. It gives an illustration

of what is allowed or not when building scenarios. Here are the basic connection rules that scenarios have

to comply with:

- A box output cannot be connected to another box output;

- A box input cannot be connected to another box input;

- A box output can be connected to multiple boxes inputs;

- A box input cannot receive more than one connection;

- A pipeline must be acyclic meaning that boxes behavior cannot impose further dependencies on their

antecedents. The acyclic nature of the pipeline removes the possibility of deadlocks between tasks,

provided the tasks are truly independent.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 46 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Scenario Configuration

As it was presented in $3.3.1 Box Algorithm Prototype, a number of flags can be set in box
prototypes. Some of these flags deal with the modifiability of boxes (possibility to
add/remove/modify input/output/setting).

Kernel consumers can retrieve handles to boxes via scenarios (getBoxDetails) and perform
some modifications to box prototypes. When such a modification is performed, boxes (TBox)
notify their box listener (see $3.4 Box Listener).

6.2 Scenario Loading/Saving

Scenario importing/exporting is handled by the scenario manager. Internally the scenario manager uses

a specific importer/exporter algorithm to load/save the scenario. In that way, any scenario format can be

imported/exported if the corresponding importer/exporter algorithms are implemented (note that all

importers/exporters must inherit toolkit CAlgorithmScenarioImporter/Exporter).

XML Scenario

The importer/exporter algorithms for XML scenario are defined in plugin FileIO. Note that the
xml scenario importer performs xsd schema validation on input scenario to validate it conforms
to a given format. The validation is implemented through a fallback mechanism:

 Scenario is validated against the newer schema version

 …

 Scenario is validated against the older (legacy) schema version

The idea behind this mechanism is to be able to discard older versions smoothly in time (first
issue a warning for deprecation, then an error).

XSD schemas can be found in the source tree {Path_Root}/share/openvibe/kernel.

6.3 Metaboxes definition

A metabox is simply a scenario that exposes the same prototype as a CBox class (input/output and

settings). Therefore CScenario class inherits from TBox. CScenario Inputs/Outputs are connected

to some boxes Intputs/Outputs in the scenario. Settings are defined by the user and are handled in the

scenario boxes using a $var{setting_name} macro.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 47 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

When a scenario is started, it is cloned and the metaboxes are expanded recursively along with their

settings. It is thus possible to have a metabox inside a metabox. Each metabox is identified by a unique

identifier assigned to it by its author.

Metaboxes

When output and/or outputs are defined in a scenario, it can be saved under the .mxb
extension in order to be considered as a metabox. Settings of the scenario will be considered as
settings of the metabox.

During initialization, the kernel checks for metaboxes available in the source tree
{Path_Root}/share/openvibe/kernel/metaboxes.

A metabox can be manipulated in a scenario like other boxes.

7. Scenario Playback

As stated in SDD, the next step after building a processing pipeline is the ability to execute it. It is achieved

through one of the Kernel service dedicated to scenario playback.

This service is centered on the player manager (CPlayerManager) which is responsible for creating and

destroying instances of players, each payer being responsible for the execution of a single scenario.

The chapter focuses on three critical concepts regarding scenario execution:

 Input data production ($7.1Data Acquisition describes the module responsible for feeding

processing pipeline with input data from EEG devices);

 Execution workflow ($7.2 explains how the processing pipeline is executed by the player);

 Synchronization ($7.3 provides insights on the way time is handled within the system).

7.1 Data Acquisition

Processing pipeline aims at performing operations on input data. Although the system is able to process

data recorded into a file (see $2.2 Stream Structures for stream recording file format), this section focuses

on data acquired from EGG devices.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 48 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

7.2 Execution Workflow

This section assumes a scenario is created or loaded (see $6 Scenario Management for scenario creation

or loading).

The execution workflow relies on a set of fundamental classes that are described in the following view.

LV-CLASSDIAGRAM-SCENARIOPLAYBACK

Primary Presentation

Element Catalog / Description

CPlayerManager: Kernel manager dedicated to player management. This class manages player lifetime

(creation, destruction). Internally, it maintains a list of players (CPlayer).

CPlayer: This class represents a player that is responsible for managing a single scenario. The player acts

like a controller and relies on a scheduler to perform the actual execution job.

CScheduler: This class represents a scheduler that manages and synchronizes the processing of data

within the pipeline. Scheduler objects are used to regulate the flow of data from pipeline start up to

pipeline end delegating processing to logical units.

CSimulatedBox: This class is a wrapper class that supervises calls to box algorithm (i.e. by creating the

box algorithm context required by box algorithms (see $3.3.2 Box Algorithm Core), calling

initialize/uninitialize/process methods of box algorithms and handling potential errors).

Actually, it is similar to the part of CAlgorithm (see $5 Algorithm Management) that calls algorithm

processing methods. Simulated box objects represent boxes in a dynamic execution context with data

waiting on their inputs and data produced on their outputs. Internally, it wraps a box algorithm object.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 49 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

 Unlike CAlgorithm class that wraps into one interface the exposure of the algorithm prototype

and the call to algorithm processing methods, CSimulatedBox just implements the call-forwarding

part. The prototype exposure part is dedicated to another class (CBox) that is presented in $6 Scenario

Management .

The previous view presents the main actors involved in scenario playback. The next one describes how

these actors are involved in the initialization of the pipeline. The initialization of the pipeline is a critical

step that must be performed before its execution to initialize resources and setup the execution

environment configuration.

Although only the initialization step is presented in this section, an uninitialization step must be
performed after a scenario execution to release resources.

BV-SEQUENCEDIAGRAM-PLAYBACKINITIALIZATION

Primary Presentation

Player Creation

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 50 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Simulated Boxes Creation

Simulated Boxes Initialization

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 51 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Element Catalog / Description

Player Creation

The player manager is responsible for creating players. Each player relies on a scheduler instantiated at

creation time. Both scheduler and player own a reference on the scenario to be executed.

Simulated Boxes Creation

Simulated boxes creation occurs within initialize call. The scheduler retrieves all box prototypes

from the scenario. For each box prototype (CBox), a simulated box (CSimulatedBox) is created.

Simulated Boxes Initialization

During their initialization step, simulated boxes use their CBox reference to retrieve the box algorithm

class identifier. They use this identifier to request the plugin manager for box algorithm plugin object

creation.

 Again, this step illustrates the difference between CBox objects and CSimulatedBox objects. In

$6 Scenario Management , it is explained that CBox objects only need a box descriptor instance as no

processing is involved at scenario creation time. Unlike CBox objects, CSimulatedBox objects are

execution time representation of boxes. At runtime, box logic is needed to actually process data.

Therefore, CSimulatedBox objects need a reference to the box algorithm plugin object.

 As described in $5 Algorithm Management, CAlgorithm objects are responsible for creating the

context needed by algorithms to perform their tasks. In the same manner, CSimulatedBox objects

create a box algorithm context (see $3.3.2 Box Algorithm Core for description of box algorithm context)

for each new call to box algorithm methods. As the context is only valid during a single call to a box

algorithm object method, implementation of box algorithm logical units should not store the box algorithm

context for a later use.

Once the execution environment is setup, a player is ready to execute a scenario. For that, it provides a

loop method that must be invoked periodically by Kernel consumers.

Player loop method

The loop method is a short-time function that must be called by client application repeatedly.
The loop method is the heartbeat of scenario execution. Each loop execution “can lead” to
the update of the processing pipeline state (i.e. input data update, calling processing methods
of every boxes in the pipeline).

“Can lead” means an update of the pipeline can be triggered or not (see
Timing section for details on synchronization). If an update is needed, it is done through a call
to the scheduler loop method. The following view describes in detail what occurs within a
scheduler loop.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 52 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

BV-SEQUENCEDIAGRAM-PLAYBACKLOOP

Primary Presentation

Scheduler Loop

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 53 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Box Algorithm Process

Element Catalog / Description

Scheduler Loop

The scheduler loops through all simulated boxes in the scenario. Calling the process method of a box

algorithm to perform the real processing on data is a 3-steps sequence:

- 1: The scheduler asks the box algorithm (manipulated through the simulated box) if it is ready to process

data (processClock for time-driven boxes and processInput for data-driven boxes).

- 2: The box algorithm checks its internal state and inform the simulated box if it is ready or not to process

For instance, a data-driven box aiming at processing signal data when a stimulation occurs could only be

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 54 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

ready to process once the stimulation chunk is received. At the meantime, signal data would be buffered

within the simulated box (push_back).

-3: The scheduler decides to trigger the processing only if the box algorithm is ready. Actual processing is

forwarded by simulated boxes to box algorithms. Once processing is performed, simulated boxes retrieve

all the boxes their outputs are connected to and use the scheduler to send produced output data to the

right input of next boxes in the pipeline (sendInput).

 For data-driven boxes, step 2 and 3 are performed for all data chunks waiting on each input.

Box Algorithm Process

This sequence focuses on box algorithms process method. It illustrated the use of the box algorithm

context to communicate with the Kernel module. Box algorithms can retrieve the static box context (CBox

reference), the dynamic box context (CSimulatedBox reference) or the player context from the box

algorithm context.

Typical uses of static context is to retrieve some prototype information (e.g. number of inputs). Box

algorithms mostly make use of the dynamic context to manipulate input and output data as well as for

communication with the Kernel.

 Some communication steps between box algorithms and the Kernel module are automatically

performed by codec algorithms (see $3.3.2 Box Algorithm Core): decoders retrieve input chunks to decode

them and mark them as deprecated while encoders retrieve output chunk references to fill their buffer.

Data Flow

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 55 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

This example shows the data flow for a single scheduler loop. The basic scenario consists of
reading data from a file, processing data and writing data into a file. The emphasis is put on the
the data flow between the scheduler, its associated simulated boxes and their associated box
algorithm (blue chip).

1. The scheduler keeps input data for each simulated box in separate containers. At the
initial stage, there is no data available in the pipeline.

2. The scheduler calls processClock on the data reader box (time-driven box). When
the box is ready to process, the scheduler triggers the processing.

3. The data reader box reads data from a file and produces two output chunks c1 and c2.

4. Once processing is finished, the produced output chunks are transmitted to the
scheduler that stores them in next box’s input data container.

5. The scheduler then deals with the next box in the pipeline. For each input chunk in the

input data container, it calls processInput. The first chunk c1 is stored in the
simulated box. The data processor box informs the scheduler it is ready to process after
receiving the second chunk c2.

6. The data processor box processes c1 and c2 and produces an output chunk c1’.

7. Once processing is finished, the produced output chunk is transmitted to the scheduler
that stores it in next box’s input data container. The scheduler cleans DP container.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 56 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

8. The scheduler then deals with the last box in the pipeline. The data writer box informs

the scheduler it is ready to process after receiving the chunk c1’.

9. The data writer box processes c1’ and writes data into a file.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 57 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

7.3 Timing

The previous section explained that a player loop can or cannot lead to an update of the pipeline. The

decision to update is tightly linked to the time model used within the system and described in the next

section.

7.3.1 Time Model

Internally, the system uses simulated real-time as time model in order to handle homogeneously input

data coming from an acquisition device (real-time data) or from a data file (simulation data). It is a well-

known pattern used in the game industry (fixed time-step) and in any field where simulation is involved.

The basic idea is to update the logic of the system at fixed intervals.

Here is some pseudo-code to illustrate the simulated-time concept:

while(app_running) 1

{

int realTime = GetTime();

while (simulatedTime < realTime) 2

{

simulatedTime += time_step; 3

update(); 4

}

// do some work (rendering, etc…)

}

The main loop (1) represents a basic application loop (API client code).

In the system, the second loop (2) is implemented in the player loop method. Update of the logic (4)

consists of a scheduler loop (a scheduler loop is a period during which each box in a scenario is executed

exactly once as explained in $7.2 Execution Workflow). During a scheduler loop, each box in the scenario

work as if the time was the simulated real time. At the end of the loop, the scheduler increases the

simulated time by a time step value (3).

Every time value handled at box algorithm level is simulated real-time, be it acquired from a
device or replayed from a file. Only the application layer has real real-time awareness.

Amount of real time needed for a scheduler loop can be:

 longer than the time step (overruns);

 shorter than the time step.

The following picture illustrates both cases.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 58 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

In the first case, real processing time is inferior to the fixed time step. During each time step, the system

performs a scheduler loop. As the loop takes less time than the time step, the processor remains idle

during the remainder of the time.

In the last case, real processing time is superior to the fixed time step what is called overrun. The system

cannot ensure outputs produced by the pipeline (e.g. visual feedbacks) are real-time.

In the middle case, the overrun is corrected in the next iteration by a lower processing time. The simulated

real-time manages to get back to supposed real real-time after a temporary long processing.

The following table presents theoretical examples that illustrate the first and last cases. In these examples,

it is assumed that real processing time is constant (4 is constant-time), elapsed time only depends on

processing time (i.e. all operation durations are negligible in loop 1 except 4) and synchronization was

perfect up to tn-1 (real processing time = time step).

 Real Processing Time = 0.1s (time step = 1s) Real Processing Time = 10s (time step = 1s)

Loop (1)

Iteration n-1
Real time = tn-1

1 scheduler loop

Simulated time += 1s (=tn-1)

Real time = tn-1

1 scheduler loop

Simulated time += 1s (=tn-1)

Loop (1)

Iteration n
Real time += 0.1s (=tn-1 + 0.1s)

1 scheduler loop

Simulated time += 1s (=tn-1 + 1s)

Real time += 10s

10 scheduler loops

Simulated time += 10s (=Real time)

Loop (1)

Iteration n+1
Idle time Real time += 100s (10x10s)

100 scheduler loops

Simulated time += 100s (=Real time)

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 59 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Setting of the time step is crucial. Reducing the step time reduces idle time raising the risk of
overrun.

Based on the time model, the player offers multiple execution modes:

 Normal speed mode that is used to illustrate the time model above (the player requests the right

number of scheduler loops according to real elapsed time; see pseudo-code above);

 Accelerated mode (the player requests as many scheduler loops as possible);

 Step-by-step mode (the player requests a single scheduler loop).

7.3.2 Time Representation

Time within the system is represented on 64 bits integer in 32:32 fixed point arithmetic. The choice of

fixed-point arithmetic over floating-point arithmetic is driven by the need to know exactly the error that

is included in computations in order to be able to correct the error or chose the computations in a way

that has no derivation (see What Every Computer Scientist Should Know About Floating-Point Arithmetic

for details about floating-point rounding errors). As fixed-point time value are represented as integer, the

gap between two adjacent values is always equals to one (what leads to maximum rounding error of

1/2^32 which is a sufficient precision in the system) while this distance varies a lot with floating-point

representation.

As a consequence, arithmetic operations on fixed-point numbers (e.g. addition, subtraction etc.) introduce

no error beyond that in their arguments.

One issue that must be taken into account with operations on fixed-point numbers is overflow.
Care has to be taken on the operation order (especially when multiplications and divisions are
involved). For conversion to/from fixed-point representation, the system provides a special class
(ITimeArithmetics).

7.3.3 System Clock

In section $7.3.1 Time Model, the use of simulated time within the system is illustrated. The scheduler and

all box algorithms manipulate simulated time. However, the notion of “real” time is essential to some

subsystems:

 The acquisition module;

 The CPlayer class;

 Benchmarking features (CChrono in openvibe-module-system);

http://en.wikipedia.org/wiki/Fixed_point_arithmetic
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 60 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

 Client code to know the elapsed time between two calls to the player loop.

In the system retrieving the “real“ time relies on the OS time measured by the OS clock. This service is

provided by the zgetTime method in the openvibe-module-system component.

System time on Linux

On Linux, time retrieval is based on gettimeofday which has a granularity of one microsecond.

System time on Windows

On Windows, time retrieval is based on a dual strategy based on timeGetTime (5/6 milliseconds

precision) and high precision counters (QueryPerformanceCounter and

QueryPerformanceFrequency).

The system relies on the OS clock while a potentially connected device has its own internal clock.
At the present time, there is no way to synchronize both clocks in the system.

7.4 Scenario Player application

Scenario player is the application responsible for loading and playing a scenario using a command line

without launching any graphical user interface.

Here are available options of the application:

Option Description Mandatory

--command-file Path to command file (command
mode only)

Yes

--config-file Path to configuration file (express
mode only)

No

--dg Global user-defined token: -
dg="(token:value)" (express mode
only)

No

--ds Scenario user-defined token: -
ds="(token:value)" (express mode
only)

No

--max-time Scenarios playing execution time
limit (express mode only)

No

--mode Execution mode: 'x' for express,
'c' for command

Yes

--play-mode Play mode: std for standard and ff
for fast-foward (express mode
only) [default=std]

No

--scenario-file Path to scenario file (express
mode only)

Yes

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 61 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

7.4.1 Scenario player execution workflow

A straightfoward commands workflow is built according to command-line (or a command file).

Scenario Player execution workflow

Commands workflow

Scenario(s) running

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 62 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

8. Configuration Management

Configuration management is about setting up an environment to execute a scenario. It is achieved

through one of the Kernel class dedicated to configuration management: the configuration manager

(CConfigurationManager).

8.1 Configuration Token

Configuration is handled with tokens that consist of name/value pairs. To access token values in other

variables, the following syntax is used: ${Token_Name}.

The configuration manager provides an expansion mechanism that analyzes a string and substitutes any

token reference (${Token_Name}) with the token value if the token name matches an internally

registered one. There are many ways to register tokens within the configuration manager.

The manager can be manipulated directly to configure the overall runtime session:

 Tokens can be added individually to the manager (createConfigurationToken);

 A set of tokens can be loaded by the manager from a configuration file

(addConfigurationFromFile).

Scenario-specific configuration tokens can be set indirectly in two ways:

 Tokens can be added individually through the player object in charge of executing the scenario

(CPlayer setScenario method takes a list of name/value pairs as parameters);

 A set of tokens can be defined in custom configuration files located in the same directory as the

loaded scenario file (this feature is only available for scenarios loaded from a file). To activate

this feature, client code must ensure OV_AttributeId_ScenarioFilename attribute is

added to the scenario before the corresponding player is initialized (TAttributable,

addAttribute).

The following view describes the expected file format for configuration files.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 63 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

IV-FILEFORMAT-CONFIGURATIONFILE

Primary Presentation

Comments

Root path expressed relative to execution directory dir

Path_Root = MyPath

Declared token reuse in value

Path_Bin = ${Path_Root}/bin

Token value inside a token name

ExperimentName = P300

ExperimentP300Path = /openvibe/data/p300

ExperimentPath = ${Experiment${ExperimentName}Path}

Environment variable used in value

Path_Env = $Environment{ENV}

Inclusion of a sub configuration file

Include = c:/Demo/${ExperimentName}.cfg

Element Catalog / Description

Token pairs are declared with name = value statements. The manager allows token names to be

expanded as token value by using ${name}.

In the snapshot, ${Path_Root} is expanded to MyPath when the manager interprets the

Path_Bin token.

Token value can also be used within token name. In the snapshot, ExperimentPath will be expanded

to ${ExperimentP300Path} that is equal to /openvibe/data/p300.

Environment variables can aslo be used as value by using the $Environment{ENV_NAME} syntax.

Specific tokens with core prefix have their value updated each time it is retrieved from the manager.

Note that a configuration file can be included from another configuration file to override some standard

settings or add specific settings by using the Include token name.

Notes

The list of standard OpenViBE tokens is available in $10.3 Standard Configuration Tokens.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 64 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

A standard session configuration file is available in /share/openvibe/kernel/*.conf.

This configuration file uses the Include token to load other configuration files. Among these
included configuration file, there is a custom file that can be edited depending on the user needs
and preferences.

Custom file location:

 Linux: ~/.config/openvibe/openvibe.rc.
 Windows : %APPDATA%/openvibe/openvibe.conf

For scenario-specific configuration, files must be located in the same directory as the scenario
file and follow this naming convention:

 *.conf and preferentially scenario.conf

Note that custom files are not created by the system and must be created manually.

8.2 Box Settings Customization

As explained in $3.3.1 Box Algorithm Prototype, box settings are handled as string so they can be expanded

by the configuration manager. In this way, the system can achieve late-binding configuration of boxes

without any scenario modification. Here are some details on how this is achieved:

1. A box algorithm setting is set with a token-dependent value as default value in the prototype

declaration or as a new value (for modifiable settings) via the TBox interface

(setSettingValue). Note that the token can be a standard token ($10.3 Standard

Configuration Tokens) or a custom token.

Settings value example: ${Custom_Token}/experiment/

2. The token is either defined in a configuration file loaded by the configuration manager

(addFromConfigurationFile) or added individually to the manager

(createConfigurationToken).

Configuration token example: Custom_Token = ~/openvibe/p300

3. At runtime, during the initialization or processing phase, box algorithms use the box algorithm

context to request settings values (CBoxAlgorithmContext, getSettingValue).

Internally, the context uses the configuration manager to expand each value (i.e. replace every

token name reference with the corresponding token value).

Retrieved setting example: ~/openvibe/p300/experiment

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 65 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Box Settings File

Box settings can also be overridden from settings specified in a file. For that, application code

(i.e. client code) must retrieve the box (CBox object) and add the attribute
OV_AttributeId_Box_SettingOverrideFilename with the settings filename to the
box.

The scheduler checks for the presence of this attribute to load the settings from the file. For
that, it makes use of the visitor pattern implemented in the base class of all OpenViBE objects
(IObject). During the initialization step, the current scenario is visited by a specific visitor
(CBoxSettingsModifierVisitor) in charge of checking for each box the existence of
the attribute mentioned above.

If the attribute is found, the settings file is loaded and parsed. As settings files follow XML

format, the visitor makes use of openvibe-module-xml to parse the file. Settings file must
comply with the following structure with settings being declared in the same order as in the
prototype:

<OpenViBE-SettingsOverride>

 <SettingValue>Algo2</SettingValue>

 <SettingValue>18.4</SettingValue>

 <SettingValue>false</SettingValue>

</OpenViBE-SettingsOverride>

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 66 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

9. Log and Error Management

9.1 System Logging

System logging is handled by the Kernel log manager (CLogManager). The following view describes this

class in details.

LV-CLASSDIAGRAM-LOGMANAGEMENT

Primary Presentation

Element Catalog / Description

CLogManager: Central class used to trace messages. It implements the ILogListener interface. The

manager forwards each log request to attached listeners that are registered at runtime. The log manager

provides different level of activation:

- Debug: Use in debug mode. Add more information than Info mode.

- Benchmark: Use for benchmark testing.

- Info: The software behavior is as expected but the information is valuable.

- Warning: Either to alert a fault is about to happen or to report the current behavior might be different

from the expected one.

- Error: A fault appeared somewhere in the system. The fault is detected and reported. Usually, the

component cannot proceed and is subsequently cancelled/disabled.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 67 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

- Fatal: Something that should never happen actually happened. Crash could not be avoided. It might be

used by client application to handled exceptions/crashes not caught by the Kernel module.

Log levels can be activated/inactivated either at manager level or at listener level. Inactivation at manager

level leads to inactivation of this log level for all listeners. Log levels can be setup from a configuration file

(see $10.3 Standard Configuration Tokens).

CLogListenerFile: Listener class used to log messages in a file.

CLogListenerConsole: Listener class used to log messages on console.

The system is easily extensible as new listeners can be implemented and attach to the logger at runtime.

Notes

Some layers in the inheritance hierarchy tree are discarded for the sake of clarity.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 68 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

9.2 Error Management

Error management is handled with an enhanced errno-like mechanism. Rationales behind this design

were:

 Interface must respect the abi compatibility design implemented in the whole framework

 Implementation with pure abstract interfaces using standard types (pointers, integer etc.)

 Adding error management must not break source compatibility with older versions

 Method return type (usually Boolean) and parameters left unchanged

As a consequence, the current implementation is built around a Kernel manager (IErrorManager) that

stores errors (IError) and can be queried to retrieve the error stack.

BV-SEQUENCEDIAGRAM-ERRORMANAGEMENT

Primary Presentation

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 69 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

Element Catalog / Description

- 1: The error manager is released

- 2: The pubic API is queried

- 3: Failure in doSomething3(). A new error with low-level details is pushed to the manager and nok

is returned.

- 4: doSomething2() checks the result of call to doSomething3() and just returns accordingly.

- 5: doSomething() checks the result of call to doSomething3(). As adding information is valuable

here, a new error with high-level information is pushed to the manager.

- 6: ClientApp checks the result of doSomething(). As it is nok, it queries the top level error from

the manager.

- 7: ClientApp retrieve low-level errors thanks to the nested error mechanism.

The error manager holds an error stack. Each time a new error is pushed to the manager, it is pushed on

the top of the stack. In this way, an error can be enhanced or not at each level and the calling code can

retrieve the whole error backtrace.

A set of utility macros was implemented to make handling errors easier in the framework.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 70 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

10. Appendix

10.1 Stream Structure Specifications

LV-EBMLSTREAM

Primary Presentation

Element Catalog / Description

Base stream not intended to be used directly.

Stream description (left view)

Version: 1

stream_type: Type identifier.

stream_version: Version number.

Stream structure (right view)

EBML nodes tree (see $2.3 Structures Identification for references about node tree identifiers).

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 71 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

LV-STREAMEDMATRIXSTREAM

Primary Presentation

Element Catalog / Description

Base stream for stream conveying data matrices.

Stream description (left view)

Version: 1

dimension_count: Numbers of dimensions for the matrix.

dimension_sizes: Size of each dimension.

dimension_labels: List of labels for each dimension.

matrix: Matrix values.

Stream structure (right view)

EBML nodes tree (see $2.3 Structures Identification for references about node tree identifiers).

Dimension field and its subfields should recur as many times as dimension count.

Notes

Inherited properties are left out in the stream description view.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 72 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

LV-CHANNELLOCALISATIONSTREAM

Primary Presentation

Element Catalog / Description

Stream description (left view)

Version: 1

dynamic: false if sensor coordinates are static, true if it can changes over time (more than one buffer

received).

dimension_count: Channels and positions.

dimension_sizes: dim1 = channel count, dim2 = 3 (normalized Cartesian coordinates in reference frame

Xright, Yfront, Zup).

Stream structure (right view)

EBML nodes tree (see $2.3 Structures Identification for references about node tree identifiers).

Notes

Inherited properties are left out in the stream description view.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 73 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

LV-CHANNELUNITSSTREAM

Primary Presentation

Element Catalog / Description

Stream intended to carry channel measurement unit information. The matrix contains on each row unit

and scaling factor for a given channel.

Stream description (left view)

Version: 1

dynamic: false if channel units are static, true if it can changes over time (more than one buffer received).

dimension_count: Channels and their unit properties.

dimension_sizes: dim1 = channel count / dim2 = 2 (unit and scaling factor).

Stream structure (right view)

EBML nodes tree (see $2.3 Structures Identification for references about node tree identifiers).

Notes

Inherited properties are left out in the stream description view.

See $2.3 Structures Identification for references about measurement units identifiers.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 74 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

LV-FEATUREVECTORSTREAM

Primary Presentation

Element Catalog / Description

Stream intended to carry a feature vector for classification purpose. The matrix contains one row

containing the list of numerical features describing an object.

Stream description (left view)

Version: 1

dimension_count: 1.

dimension_sizes: dim1 = the features.

Stream structure (right view)

EBML nodes tree (see $2.3 Structures Identification for references about node tree identifiers).

Notes

Inherited properties are left out in the stream description view.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 75 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

LV-SPECTRUMSTREAM

Primary Presentation

Element Catalog / Description

Stream intended to carry EEG signal spectral analysis results. The matrix contains on each row the list of

spectral powers of each frequency band for a given channel.

Stream description (left view)

Version: 2

dimension_count: Channels and frequency bands.

dimension_sizes: dim1 = channel count, dim2 = number of frequency bands.

sampling rate: the signal sampling rate

frequencies_list: List of frequencies. Each value represents the center of a frequency band.

Stream structure (right view)

EBML nodes tree (see $2.3 Structures Identification for references about node tree identifiers).

Notes

Inherited properties are left out in the stream description view.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 76 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

LV-SIGNALSTREAM

Primary Presentation

Element Catalog / Description

Stream intended to carry the EEG signals on one or multiple channels. The matrix contains on each row

the sample data of a given channel. Rows grows top down with index notation from 1 to n while columns,

representing time or sample count, grows from left to right. One matrix buffer is one signal chunk.

Stream description (left view)

Version: 2

sampling_frequency: sampling frequency of the signal.

dimension_count: Channels and samples.

dimension_sizes: dim1 = channel count, dim2 = sample count per buffer.

Stream structure (right view)

EBML nodes tree (see $2.3 Structures Identification for references about node tree identifiers).

Notes

Inherited properties are left out in the stream description view.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 77 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

LV-STIMULATIONSSTREAM

Primary Presentation

Element Catalog / Description

Stream intended to carry stimulations information. A typical used is to select part of a signal based on the

stimulation type and occurrence time.

Stream description (left view)

Version: 3

stimulaton_set: A stimulation set contains:

- The stimulation date as 64 bits unsigned integer with 32:32 fixed point precision.

- The stimulation identifier (see $2.3 Structures Identification for references about stimulations

identifiers).

- The stimulation duration as 64 bits unsigned integer with 32:32 fixed point precision.

Stream structure (right view)

EBML nodes tree (see $2.3 Structures Identification for references about node tree identifiers).

Notes

Inherited properties are left out in the stream description view.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 78 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

LV-EXPERIMENTINFORMATIONSTREAM

Primary Presentation

Element Catalog / Description

Stream intended to carry information on the experiment being conducted.

Stream description (left view)

Version: 1

Experiment description: identifier and date.

Subject description: identifier, name and age.

Context: laboratory identifier and name, technician identifier and name.

Stream structure (right view)

EBML nodes tree (see $2.3 Structures Identification for references about node tree identifiers).

Notes

Inherited properties are left out in the stream description view.

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 79 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

LV-ACQUISITION-STREAM

Primary Presentation

Element Catalog / Description

Multiplexed stream encapsulating five types of streams. It is intended to be used by an acquisition module

to convert raw data to data usable in the processing pipeline.

Stream description (left view)

Version: 3

This is a multiplexed stream encapsulating five streams.

Stream structure (right view)

EBML nodes tree (see $2.3 Structures Identification for references about node tree identifiers).

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 80 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

10.2 Plugins Components List

The following table presents the list of plugins with their main components.

Plugin name Type Plugin Object Class Name / Identifier Referen
ce Doc

openvibe-

plugins-

classification

Algorith
m

CAlgorithmClassifierShrinkageLDA

OVP_ClassId_Algorithm_ClassifierShrinkageLDA
link

openvibe-

plugins-

classification

Algorith
m

CAlgorithmClassifierConditionedCovariance

OVP_ClassId_Algorithm_ConditionedCovariance
link

openvibe-

plugins-

classification

Box
Algorith
m

CBoxAlgorithmClassifierProcessor

OVP_ClassId_BoxAlgorithm_ClassifierProcessor
link

openvibe-

plugins-

classification

Box
Algorith
m

CBoxAlgorithmClassifierTrainer

OVP_ClassId_BoxAlgorithm_ClassifierTrainer
link

openvibe-

plugins-

classification

Box
Algorith
m

CBoxAlgorithmVotingClassifier

OVP_ClassId_BoxAlgorithm_VotingClassifier
link

openvibe-

plugins-file-io

Algorith
m

CAlgorithmOVMatrixFileReader

OVP_ClassId_Algorithm_OVMatrixFileReader

openvibe-

plugins-file-io

Algorith
m

CAlgorithmOVMatrixFileWriter

OVP_ClassId_Algorithm_OVMatrixFileWriter

openvibe-

plugins-file-io

Algorith
m

CAlgorithmXMLScenarioExporter

OVP_ClassId_Algorithm_XMLScenarioExporter

openvibe-

plugins-file-io

Algorith
m

CAlgorithmXMLScenarioImporer

OVP_ClassId_Algorithm_XMLScenarioImporter

link

openvibe-

plugins-file-io

Box
Algorith
m

CBoxAlgorithmGenericStreamReader

OVP_ClassId_BoxAlgorithm_GenericStreamReader

link

openvibe-

plugins-file-io

Box
Algorith
m

CBoxAlgorithmGenericStreamWriter

OVP_ClassId_BoxAlgorithm_GenericStreamWriter

link

openvibe-

plugins-file-io

Box

Algorith
m

CBoxAlgorithmOVCSVFileReader

OVP_ClassId_BoxAlgorithm_OVCSVFileReader

link

openvibe-

plugins-file-io

Box

Algorith
m

CBoxAlgorithmOVCSVFileWriter

OVP_ClassId_BoxAlgorithm_OVCSVFileWriter

link

openvibe-

plugins-file-io

Box

Algorith
m

CBoxAlgorithmElectrodeLocalisationFileReader

OVP_ClassId_BoxAlgorithm_ElectrodeLocalisationFile

Reader

link

http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_ClassifierTrainer.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_ClassifierTrainer.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_ClassifierProcessor.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_ClassifierTrainer.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_VotingClassifier.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_XMLScenarioImporter.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_GenericStreamReader.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_GenericStreamWriter.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_CSVFileReader.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_CSVFileWriter.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_ElectrodeLocalisationFileReader.html

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 81 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

openvibe-

plugins-file-

samples

Box
Algorith
m

CBoxAlgorithmClockStimulator

OVP_ClassId_BoxAlgorithm_ClockStimulator

link

openvibe-

plugins-file-

samples

Box
Algorith
m

CIdentity

OVP_ClassId_Identity

link

openvibe-

plugins-file-

samples

Box
Algorith
m

CTimeSignalGenerator

OVP_ClassId_TimeSignalGenerator

link

openvibe-

plugins-signal-

processing

Algorith
m

CAlgorithmStimulationBasedEpoching

OVP_ClassId_Algorithm_StimulationBasedEpoching

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CEpochAverage

OVP_ClassId_BoxAlgorithm_EpochAverage

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithmSpectrumAverage

OVP_ClassId_BoxAlgorithm_SpectrumAverage

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CSignalAverage

OVP_ClassId_SignalAverage

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithmCommonAverageReference

OVP_ClassId_BoxAlgorithm_CommonAverageReference

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithmReferenceChannel

OVP_ClassId_BoxAlgorithm_ReferenceChannel

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithmChannelRename

OVP_ClassId_BoxAlgorithm_ChannelRename

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithmChannelSelector

OVP_ClassId_BoxAlgorithm_ChannelSelector

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithmCrop

OVP_ClassId_BoxAlgorithm_Crop

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CSimpleDSP

OVP_ClassId_SimpleDSP

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithmSignalDecimation

OVP_ClassId_BoxAlgorithm_SignalDecimation

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithmSpatialFilter

OVP_ClassId_BoxAlgorithm_SpatialFilter

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithmXDAWNSpatialFilterTrainer

OVP_ClassId_BoxAlgorithm_XDAWNSpatialFilterTrainer
link

http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_ClockStimulator.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_Identity.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_TimeSignal.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_StimulationBasedEpoching.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_EpochAverage.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_SpectrumAverage.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_SignalAverage.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_CommonAverageReference.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_ReferenceChannel.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_ChannelRename.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_ChannelSelector.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_Crop.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_SimpleDSP.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_SignalDecimation.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_SpatialFilter.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_XDAWNSpatialFilterTrainer.html

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 82 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithmStimulationBasedEpoching

OVP_ClassId_BoxAlgorithm_StimulationBasedEpoching

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CTimeBasedEpoching

OVP_ClassId_TimeBasedEpoching

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithmSpectrrumAverage

OVP_ClassId_BoxAlgorithm_SpectrumAverage

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithmFrequencyBandSelector

OVP_ClassId_BoxAlgorithm_FrequencyBandSelector

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithmRegularizedCSPTrainer

OVP_ClassId_BoxAlgorithm_RegularizedCSPTrainer
link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithmSignalResampling

OVP_ClassId_BoxAlgorithm_SignalResampling

link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithmSpectralAnalysis

OVP_ClassId_SpectralAnalysis
link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithm_TemporalFilter

OVP_ClassId_BoxAlgorithm_TemporalFilter
link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithmWindowing

OVP_ClassId_Windowing
link

openvibe-

plugins-signal-

processing

Box
Algorith
m

CBoxAlgorithm_ZeroCrossingDetector

OVP_ClassId_BoxAlgorithm_ZeroCrossingDetector
link

openvibe-

plugins-

stimulation

Box
Algorith
m

CBoxAlgorithmStimulationMultiplexer

OVP_ClassId_BoxAlgorithm_StimulationMultiplexer

link

openvibe-

plugins-

stimulation

Box
Algorith
m

CBoxAlgorithmPlayerController

OVP_ClassId_BoxAlgorithm_PlayerController

link

openvibe-

plugins-

stimulation

Box
Algorith
m

CBoxAlgorithmTimeout

OVP_ClassId_BoxAlgorithm_Timeout

link

openvibe-

plugins-

stimulation

Box
Algorith
m

CBoxAlgorithm_StimulationVoter

OVP_ClassId_BoxAlgorithm_StimulationVoter
link

openvibe-

plugins-stream-

codecs

Algorith
m

All codec algorithms classes. $2.2.4
Stream
Encoding
/Decodin
g

http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_StimulationBasedEpoching.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_TimeBasedEpoching.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_SpectrumAverage.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_FrequencyBandSelector.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_RegularizedCSPTrainer.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_SignalResampling.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_SpectralAnalysis.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_TemporalFilter.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_Windowing.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_ZeroCrossingDetector.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_StimulationMultiplexer.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_PlayerControler.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_Timeout.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_StimulationVoter.html

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 83 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

openvibe-

plugins-

streaming

Box
Algorith
m

CBoxAlgorithmSignalMerger

OVP_ClassId_BoxAlgorithm_SignalMerger

link

openvibe-

plugins-

streaming

Box
Algorith
m

CBoxAlgorithmStreamedMatrixMultiplexer

OVP_ClassId_BoxAlgorithm_StreamedMatrixMultiplexer

link

openvibe-

plugins-tools

Box
Algorith
m

CBoxAlgorithmEBMLStreamSpy

OVP_ClassId_BoxAlgorithm_EBMLStreamSpy

link

openvibe-

plugins-tools

Box
Algorith
m

CBoxAlgorithmMatrixValidityChecker

OVP_ClassId_BoxAlgorithm_MatrixValidityChecker

link

openvibe-

plugins-tools

Box
Algorith
m

CBoxAlgorithmStimulationListener

OVP_ClassId_BoxAlgorithm_StimulationListener

link

openvibe-

plugins-feature-

extraction

Box
Algorith
m

CBoxAlgorithmFeatureAggregator

OVP_ClassId_BoxAlgorithm_FeatureAggregator
link

http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_SignalMerger.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_StreamedMatrixMultiplexer.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_EBMLStreamSpy.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_MatrixValidityChecker.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_StimulationListener.html
http://openvibe.inria.fr/documentation/latest/Doc_BoxAlgorithm_FeatureAgregator.html

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 84 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

10.3 Standard Configuration Tokens

Token Name Token Description

${Path_Root} Root installation directory of OpenViBE

${Path_Bin} Binaries directory

${Path_Lib} Libraries directory

${Path_Data} Data directory. (default is
${Path_Root}/share/openvib

e)

${Path_Samples} Scenarios directory. (default is
${Path_Data}/scenarios)

${Path_UserData} Writable location for data (default is
%APPDATA%/openvibe on
Windows and

$HOME/.config/openvibe on
Linux)

${Path_Log} Log directory (default is
${Path_UserData}/log)

${Path_Tmp} Temporary directory (default is
${Path_UserData}/tmp)

${Kernel_PluginsPatternLinux} Linux openvibe plugin regex pattern

(libopenvibe-plugins-*.so)

${Kernel_PluginsPatternWindows} Windows openvibe plugin regex
pattern (openvibe-plugins-
*.dll)

${Kernel_PluginsPatternMacOS} Mac OS X openvibe plugin regex

pattern (libopenvibe-plugins-
*.dylib)

${Kernel_Plugins} Full plugins path regex pattern
(${Path_Lib}/${Kernel_Plug

insPattern${OperatingSyste

m})

${Kernel_MainLogLevel} Log level threshold below which all
messages are ignored.

${Kernel_ConsoleLogLevel} Specific log level threshold for console
output (must be greater than main one)

${Kernel_ConsoleLogWithHexa}

Add hexadecimal (0x…) value after
time log for console output when set to

True (False by default)

${Kernel_ConsoleLogTimeInSecond}

Time log in seconds for console output
when set to True

(True by default)

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 85 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

${Kernel_ConsoleLogTimePrecision}

Time log precision for console output

(3 by default)

${Kernel_FileLogLevel} Specific log level threshold for file
output (must be greater than main
one).

${Kernel_FileLogWithHexa}

Add hexadecimal (0x…) value after time

log for file output when set to True
(False by default).

${Kernel_FileLogTimeInSecond}

Time log in seconds for file output when
set to True (True by default).

${Kernel_FileLogTimePrecision}

Time log precision for file output (3 by
default).

${Kernel_PlayerFrequency}

Player frequency in Hz.

${Kernel_DelayedConfiguration}

File loaded later when a scenario
execution starts
(${Path_Data}/kernel/openvi

be-delayed.conf)

${Kernel_AbortPlayerWhenBoxNeedsUpdate}

When True, do not start the
processing if at least one box has to be
updated (False by default).

${Kernel_AbortScenarioImportWhenBoxNeedsU

pdate}

When True, do not import the
scenario if at least one box has to be
updated (False by default).

${Kernel_AbortScenarioImportOnUnknownSett

ing}

When True, do not import the
scenario if at least one setting is

unknown (False by default).

${Kernel_AbortPlayerWhenBoxIsDisabled} When True, abort player if at least one

box is disabled (False by default).

${Kernel_Metabox} Directory(ies) from which the kernel
can load metaboxes files
(${Path_Data}/metaboxes/;${
Path_UserData}/metaboxes/
by default)

$core{random}

Random number

$core{index}

Incremental index

$core{time}

Current time

$core{date}

Current data

CertiViBE - v1.0

Modules Detailed Design Specifications

CERT-01 MSD-01

Page 86 / 86

All rights reserved. Passing on or copying of this document, use and communication of its contents not permitted without written authorization

$core{real-time}

Time since configuration manager
creation

$core{process-id}

Current process id

